We report on photoluminescence in the 3–7 µm mid-wave infrared (MWIR) range from sub-100 nm strained thin films of rocksalt PbSe(001) grown on GaAs(001) substrates by molecular beam epitaxy. These bare films, grown epitaxially at temperatures below 400 °C, luminesce brightly at room temperature and have minority carrier lifetimes as long as 172 ns. The relatively long lifetimes in PbSe thin films are achievable despite threading dislocation densities exceeding 109 cm−2 arising from island growth on the nearly 8% lattice- and crystal-structure-mismatched GaAs substrate. Using quasi-continuous-wave and time-resolved photoluminescence, we show that the Shockley–Read–Hall recombination is slow in our high dislocation density PbSe films at room temperature, a hallmark of defect tolerance. Power-dependent photoluminescence and high injection excess carrier lifetimes at room temperature suggest that degenerate Auger recombination limits the efficiency of our films, although the Auger recombination rates are significantly lower than equivalent III–V bulk materials and even a bit slower than expectations for bulk PbSe. Consequently, the combined effects of defect tolerance and low Auger recombination rates yield an estimated peak internal quantum efficiency of roughly 30% at room temperature, unparalleled in the MWIR for a severely lattice-mismatched thin film. We anticipate substantial opportunities for improving performance by optimizing crystal growth as well as understanding Auger processes in thin films. These results highlight the unique opportunity to harness the unusual chemical bonding in PbSe and related IV–VI semiconductors for heterogeneously integrated mid-infrared light sources constrained by tight thermal budgets in new device designs.
more »
« less
Mid-wave infrared photoluminescence from low-temperature-grown PbSe epitaxial films on GaAs after rapid thermal annealing
We investigate the beneficial effects of rapid thermal annealing on structure and photoluminescence of PbSe thin films on GaAs (001) grown below 150 °C, with a goal of low temperature integration for infrared optoelectronics. Thin films of PbSe deposited on GaAs by molecular beam epitaxy are epitaxial at these reduced growth temperatures, yet the films are highly defective with a mosaic grain structure with low angle and dendritic boundaries following coalescence. Remarkably, we find that rapid thermal annealing for as short as 180 s at temperatures between 300 and 425 °C in nitrogen ambient leads to extensive re-crystallization and transformation of these grain boundaries. The annealing at the same time dramatically improves the band edge luminescence at 3.7 μm from previously undetectable levels to nearly half as intense as our best conventionally grown PbSe films at 300 °C. We show using an analysis of laser pump-power dependent photoluminescence measurements that this dramatic improvement in the photoluminescence intensity is due to a reduction in the trap-assisted recombination. However, we find it much less correlated with improved structural parameters determined by x-ray diffraction rocking curves, thereby pointing to the importance of eliminating point defects over extended defects. Overall, the success of rapid thermal annealing in improving the luminescent properties of low growth temperature PbSe is a step toward the integration of PbSe infrared optoelectronics in low thermal budget, back end of line compatible fabrication processes.
more »
« less
- Award ID(s):
- 2036520
- PAR ID:
- 10513507
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 123
- Issue:
- 13
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900–1000 °C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 °C to 5% at 1000 °C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A1g peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility mFE = 17.3 cm2/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 °C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from ∼2% at 900 °C to ∼5% at 950 °C to ∼10% at 1000 °C. The growth temperature of 950 °C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.more » « less
-
We report the synthesis and electronic properties of the correlated metal CaVO3, grown by hybrid molecular beam epitaxy. Films were grown on (100) LaAlO3 substrates at a temperature of 900 °C by supplying a flux of elemental Ca through a thermal effusion cell and metalorganic precursor, vanadium oxitriisopropoxide, as a source of vanadium. The presence of a self-regulated growth regime was revealed by the appearance of a specific surface reconstruction detected by reflection high-energy electron diffraction. Films grown within the growth window were characterized by atomically flat surfaces. X-ray reciprocal space maps revealed that the films were coherently strained to the substrate and inherited its twinned microstructure. Despite the presence of twin walls, CaVO3 thin films, grown within the stoichiometric growth window, revealed very low electrical resistivities at low temperatures, with residual resistivity ratios exceeding 90, while films grown at either Ca- or V-excess show deteriorated transport properties, attributed to the presence of extrinsic defects arising from the non-stoichiometry present in these films.more » « less
-
We report a synthesis procedure for dodecanethiol capped wurtzite ZnO nanocrystals with an average diameter of 4 nm that are monodisperse, highly soluble, and shelf-stable for many months. Compared to previous ZnO ink recipes, we demonstrate improved particle solubility and excellent ink stability, resulting in ZnO nanocrystal inks that are optimized for printed electronics applications. The ZnO nanocrystal solution exhibits an absorption peak at 341 nm (3.63 eV), which represents a blue-shift of approximately 0.3 eV from the bulk ZnO bandgap (∼3.3 eV). This blue shift is consistent with previously reported models for an increased bandgap due to quantum confinement. We used variable-angle spectroscopic ellipsometry (VASE) to determine the optical properties of solution-processed thin films of ZnO nanocrystals, which provides valuable insight into the changes in film composition and morphology that occur during thermal annealing treatments ranging from 150–300 °C. The ZnO nanocrystals maintain their quantum confinement when deposited into a thin film, and the degree of quantum confinement is gradually reduced as the thermal annealing temperature increases. Using infrared absorption measurements (FTIR) and X-ray photoelectron spectroscopy (XPS), we show that the dodecanethiol ligands are removed from the ZnO films during annealing, resulting in a high-purity semiconductor film with very low carbon contamination. Furthermore, we show that annealing at 300 °C results in complete ligand removal with only a slight increase in grain size. Thin-film transistors (TFT) using ZnO nanocrystals as the channel material annealed at 300 °C show moderate mobility (∼0.002 cm 2 V −1 s −1 ) and good on/off ratio >10 4 . These results demonstrate the distinct advantages of colloidal nanocrystals for printed electronics applications: the composition and morphology of the solution-processed film can be carefully tuned by controlling the size and surface coating of the nanocrystals in the ink.more » « less
-
The (SmxGa1−x)2O3 alloy system is a potential new dielectric for compound semiconductors such as GaAs. Using molecular beam epitaxy under metal-modulated growth conditions, we grew the binary oxide, Sm2O3, at two substrate temperatures (100 and 500 °C) and optimized the structural, morphological, and electrical properties of the films. Decreasing the Sm cell temperature suppressed the formation of the monoclinic phase and promoted the growth of the cubic phase. Next, the ternary oxide, (SmxGa1−x)2O3, was deposited to investigate the effects of Ga incorporation. Optimization experiments were used to determine the effects of substrate temperature and samarium cell temperature (i.e., growth rate) on film stoichiometry, phase distribution, and microstructure in these films. Films grown at 500 °C showed significant surface roughness and the presence of multiple crystalline phases. Since all of the Sm-based oxides (i.e., samarium oxide with and without gallium) were found to have unbonded Sm metal, annealing experiments were carried out in oxygen and forming gas to determine the effects of annealing on film stoichiometry. The motivation behind annealing in forming gas was to see whether this commonly used technique for reducing interface densities could improve the film quality. GaAs metal-oxide-semiconductor diodes with (SmxGa1−x)2O3 showed breakdown fields at 1 mA/cm2 of 4.35 MV/cm, which decreased with increasing Sm unbonded metal content in the films.more » « less