skip to main content


This content will become publicly available on March 1, 2025

Title: Effect of growth temperature on the microstructure and properties of epitaxial MoS2 monolayers grown by metalorganic chemical vapor deposition

Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900–1000 °C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 °C to 5% at 1000 °C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A1g peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility mFE = 17.3 cm2/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 °C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from ∼2% at 900 °C to ∼5% at 950 °C to ∼10% at 1000 °C. The growth temperature of 950 °C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.

 
more » « less
Award ID(s):
1654107
NSF-PAR ID:
10490005
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
JOURNAL OF VACUUM SICENCE AND TECHNOLOGY A
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
42
Issue:
2
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Realization of wafer-scale single-crystal films of transition metal dichalcogenides (TMDs) such as WS2 requires epitaxial growth and coalescence of oriented domains to form a continuous monolayer. The domains must be oriented in the same crystallographic direction on the substrate to inhibit the formation of inversion domain boundaries (IDBs), which are a common feature of layered chalcogenides. Here we demonstrate fully coalesced unidirectional WS2 monolayers on 2 in. diameter c-plane sapphire by metalorganic chemical vapor deposition using a multistep growth process to achieve epitaxial WS2 monolayers with low in-plane rotational twist (0.09°). Transmission electron microscopy analysis reveals that the WS2 monolayers are largely free of IDBs but instead have translational boundaries that arise when WS2 domains with slightly offset lattices merge together. By regulating the monolayer growth rate, the density of translational boundaries and bilayer coverage were significantly reduced. The unidirectional orientation of domains is attributed to the presence of steps on the sapphire surface coupled with growth conditions that promote surface diffusion, lateral domain growth, and coalescence while preserving the aligned domain structure. The transferred WS2 monolayers show neutral and charged exciton emission at 80 K with negligible defect-related luminescence. Back-gated WS2 field effect transistors exhibited an ION/OFF of ∼107 and mobility of 16 cm2/(V s). The results demonstrate the potential of achieving wafer-scale TMD monolayers free of inversion domains with properties approaching those of exfoliated flakes. 
    more » « less
  2. The epitaxial growth of wafer-scale semiconducting TMDs monolayers (MoS 2 , WS 2 , WSe 2 ) on c-plane sapphire by metalorganic chemical vapor deposition (MOCVD) is demonstrated and the resulting structural and optical properties of the films are compared to elucidate trends based on metal and chalcogen species. The sulfur based TMDs exhibit improved epitaxy, fewer defects and increased photoluminescence intensity on sapphire compared to WSe 2 which is attributed to a smaller effective lattice mismatch and improved stability. 
    more » « less
  3. In this Letter, the role of background carbon in metalorganic chemical vapor deposition (MOCVD) β-Ga2O3 growth using trimethylgallium (TMGa) as the Ga precursor was investigated. The quantitative C and H incorporations in MOCVD β-Ga2O3 thin films grown at different growth rates and temperatures were measured via quantitative secondary ion mass spectroscopy (SIMS). The SIMS results revealed both [C] and [H] increase as the TMGa molar flow rate/growth rate increases or growth temperature decreases. The intentional Si incorporation in MOCVD β-Ga2O3 thin films decreases as the growth rate increases or the growth temperature decreases. For films grown at relatively fast growth rates (GRs) (TMGa > 58 μmol/min, GR > 2.8 μm/h) or relatively low temperature (<950 °C), the [C] increases faster than that of the [H]. The experimental results from this study demonstrate the previously predicted theory—H can effectively passivate the compensation effect of C in n-type β-Ga2O3. The extracted net doping concentration from quantitative SIMS {[Si]-([C]-[H])} agrees well with the free carrier concentration measured from Hall measurement. The revealing of the role of C compensation in MOCVD β-Ga2O3 and the effect of H incorporation will provide guidance on designing material synthesis for targeted device applications. 
    more » « less
  4. Abstract

    Here we benchmark device-to-device variation in field-effect transistors (FETs) based on monolayer MoS2and WS2films grown using metal-organic chemical vapor deposition process. Our study involves 230 MoS2FETs and 160 WS2FETs with channel lengths ranging from 5 μm down to 100 nm. We use statistical measures to evaluate key FET performance indicators for benchmarking these two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers against existing literature as well as ultra-thin body Si FETs. Our results show consistent performance of 2D FETs across 1 × 1 cm2chips owing to high quality and uniform growth of these TMDs followed by clean transfer onto device substrates. We are able to demonstrate record high carrier mobility of 33 cm2 V−1 s−1in WS2FETs, which is a 1.5X improvement compared to the best reported in the literature. Our experimental demonstrations confirm the technological viability of 2D FETs in future integrated circuits.

     
    more » « less
  5. Transition metal dichalcogenides (TMDCs) are potential materials for future optoelectronic devices. Grain boundaries (GBs) can significantly influence the optoelectronic properties of TMDC materials. Here, we have investigated the mechanical characteristics of tungsten diselenide (WSe 2 ) monolayers and failure process with symmetric tilt GBs using ReaxFF molecular dynamics simulations. In particular, the effects of topological defects, loading rates, and temperatures are investigated. We considered nine different grain boundary structures of monolayer WSe 2 , of which six are armchair (AC) tilt structures, and the remaining three are zigzag (ZZ) tilt structures. Our results indicate that both tensile strength and fracture strain of WSe 2 with symmetric tilt GBs decrease as the temperature increases. We revealed an interfacial phase transition for high-angle GBs reduces the elastic strain energy within the interface at finite temperatures. Furthermore, brittle cracking is the dominant failure mode in the WSe 2 monolayer with tilted GBs. WSe 2 GB structures showed more strain rate sensitivity at high temperatures than at low temperatures. 
    more » « less