Abstract Climate change is resulting in increasing ocean temperatures and salinity variability, particularly in estuarine environments. Tolerance of temperature and salinity change interact and thus may impact organismal resilience. Populations can respond to multiple stressors in the short‐term (i.e., plasticity) or over longer timescales (i.e., adaptation). However, little is known about the short‐ or long‐term effects of elevated temperature on the tolerance of acute temperature and salinity changes. Here, we characterized the response of the near‐shore and estuarine copepod,Acartia tonsa, to temperature and salinity stress. Copepods originated from one of two sets of replicated >40 generation‐old temperature‐adapted lines: ambient (AM, 18°C) and ocean warming (OW, 22°C). Copepods from these lines were subjected to one and three generations at the reciprocal temperature. Copepods from all treatments were then assessed for differences in acute temperature and salinity tolerance. Development (one generation), three generations, and >40 generations of warming increased thermal tolerance compared to Ambient conditions, with development in OW resulting in equal thermal tolerance to three and >40 generations of OW. Strikingly, developmental OW and >40 generations of OW had no effect on low salinity tolerance relative to ambient. By contrast, when environmental salinity was reduced first, copepods had lower thermal tolerances. These results highlight the critical role for plasticity in the copepod climate response and suggest that salinity variability may reduce copepod tolerance to subsequent warming. 
                        more » 
                        « less   
                    
                            
                            Simultaneous warming and acidification limit population fitness and reveal phenotype costs for a marine copepod
                        
                    
    
            Phenotypic plasticity and evolutionary adaptation allow populations to cope with global change, but limits and costs to adaptation under multiple stressors are insufficiently understood. We reared a foundational copepod species,Acartia hudsonica, under ambient (AM), ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) conditions for 11 generations (approx. 1 year) and measured population fitness (net reproductive rate) derived from six life-history traits (egg production, hatching success, survival, development time, body size and sex ratio). Copepods under OW and OWA exhibited an initial approximately 40% fitness decline relative to AM, but fully recovered within four generations, consistent with an adaptive response and demonstrating synergy between stressors. At generation 11, however, fitness was approximately 24% lower for OWA compared with the AM lineage, consistent with the cost of producing OWA-adapted phenotypes. Fitness of the OWA lineage was not affected by reversal to AM or low food environments, indicating sustained phenotypic plasticity. These results mimic those of a congener,Acartia tonsa, while additionally suggesting that synergistic effects of simultaneous stressors exert costs that limit fitness recovery but can sustain plasticity. Thus, even when closely related species experience similar stressors, species-specific costs shape their unique adaptive responses. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10513654
- Publisher / Repository:
- Royal Society Publishing
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 290
- Issue:
- 2006
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod,Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments.more » « less
- 
            Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change.more » « less
- 
            Keshavmurthy, Shashank (Ed.)The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa,Porites lobata,Montipora capitata, andPocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33–67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0–10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in bothPoritesspecies and was associated with higher survivorship compared toM.capitataandP.acutawhich exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However,M.capitatagenets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.more » « less
- 
            The global ocean is expected to both acidify and warm concurrently; thus, multiple-stressor manipulative experimentation is an emergent area of study that ultimately aims to examine the individual and interactive effects of these factors on marine organisms. We characterized the physiological responses to acidification and warming of the intertidal grazerLottia scutum, and examined how these ocean change variables influenced predator-prey dynamics withEvasterias troschelii,a key sea star predator. Specifically, we conducted a laboratory experiment where we exposed limpets to factorial combinations of temperature (11 and 15°C) and pH (7.6 and 8.0), and measured effects on thermal tolerance, metabolic rate, cortisol concentrations, and behavioral responses to the predator. We found that ocean warming (OW) decreased the critical thermal maxima (CTmax) and increased cortisol levels inL. scutum, whereas ocean acidification (OA) increased the mass-specific metabolic rate in this species. Additionally, we found that there was no significant effect of OA or OW on the anti-predator behavior ofL. scutumwhen exposed toE. troschelii. These results highlight the need for future studies to integrate multidisciplinary experimental designs (i.e. behavior and physiology) that span multiple levels of biological organization to make ecologically relevant predictions for how marine organisms will respond to ocean change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    