Rapid progress in atomic, molecular, and optical (AMO) physics techniques enabled the creation of ultracold samples of molecular species and opened opportunities to explore chemistry in the ultralow temperature regime. In particular, both the external and internal quantum degrees of freedom of the reactant atoms and molecules are controlled, allowing studies that explored the role of the long-range potential in ultracold reactions. The kinetics of these reactions have typically been determined using the loss of reactants as proxies. To extend such studies into the short-range, we developed an experimental apparatus that combines the production of quantum-state-selected ultracold KRb molecules with ion mass and kinetic energy spectrometry, and directly observed KRb + KRb reaction intermediates and products [M.-G. Hu and Y. Liu, et al. , Science , 2019, 366 , 1111]. Here, we present the apparatus in detail. For future studies that aim for detecting the quantum states of the reaction products, we demonstrate a photodissociation based scheme to calibrate the ion kinetic energy spectrometer at low energies.
more »
« less
Reaction interferometry with ultracold molecules
We explore utilizing our previously observed reactive nuclear spin coherence to control the KRb + KRb ultracold chemical reaction to realize a reaction interferometer.
more »
« less
- PAR ID:
- 10513662
- Publisher / Repository:
- Faraday Discussions
- Date Published:
- Journal Name:
- Faraday Discussions
- ISSN:
- 1359-6640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemical reactions, in which bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigated this question by studying the 2KRb + Rb2reaction at 500 nanokelvins, focusing on the nuclear spin degrees of freedom. We prepared the initial nuclear spins in KRb (potassium-rubidium) in an entangled state by lowering the magnetic field to where the spin-spin interaction dominates and characterized the preserved coherence in nuclear spin wave function after the reaction. We observed an interference pattern that is consistent with full coherence at the end of the reaction, suggesting that entanglement prepared within the reactants could be redistributed through the atom-exchange process.more » « less
-
Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. In this study, we took the contrasting approach of prolonging the lifetime of an intermediate by preparing reactant molecules in their lowest rovibronic quantum state at ultralow temperatures, thereby markedly reducing the number of exit channels accessible upon their mutual collision. Using ionization spectroscopy and velocity-map imaging of a trapped gas of potassium-rubidium (KRb) molecules at a temperature of 500 nanokelvin, we directly observed reactants, intermediates, and products of the reaction40K87Rb +40K87Rb → K2Rb2* → K2+ Rb2. Beyond observation of a long-lived, energy-rich intermediate complex, this technique opens the door to further studies of quantum-state–resolved reaction dynamics in the ultracold regime.more » « less
-
We show that reactive molecules with a unit probability of reaction naturally provide a simulator of some intriguing black hole physics. The unit reaction at the short distance acts as an event horizon and delivers a one-way traffic for matter waves passing through the potential barrier when two molecules interact by high partial-wave scatterings or dipole-dipole interactions. In particular, the scattering rate as a function of the incident energy exhibits a thermal-like distribution near the maximum of the interaction energy in the same manner as a scalar field scatters with the potential barrier outside the event horizon of a black hole. Such a thermal-like scattering can be extracted from the temperature-dependent two-body loss rate measured in experiments on KRb and other molecules.more » « less
-
ABSTRACT Solar radiation modification (SRM) is a potential strategy to rapidly mitigate global warming by reflecting more sunlight into space. However, its impact on tropical hydrological cycles remains underexplored. This study investigates the potential effects of SRM on streamflow in the Kelantan River Basin (KRB) by incorporating climate projections from the Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6) into the Soil and Water Assessment Tool plus (SWAT+) model. Results indicate that UKESM1-0-LL and MPI-ESM1-2-LR exhibit higher uncertainty in representing KRB's climate compared to CNRM-ESM2-1 and IPSL-CM6A-LR. Under SSP5-8.5, maximum and minimum temperatures are projected to increase by up to 3.52 °C by the late 21st century, while SRM scenarios may limit warming to 1.72-2.33 °C, similar to 1.96-2.22 °C under SSP2-4.5. The multi-model ensemble mean projected an inverse V-shaped trend in annual precipitation, with a peak in the mid-21st century before declining, except for G6sulfur, which exhibits a steady decrease. Increases in monthly precipitation from November to January during the 2045-2064 period under all evaluated scenarios may intensify flooding in the KRB. Meanwhile, decreases in streamflow during dry months are projected for the periods 2045-2064 and 2065-2085 under G6sulfur, particularly in the middle and upper basins.more » « less
An official website of the United States government

