Abstract Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali$$^{23}\hbox {Na}^{87}$$ Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or$$\hbox {Na}_2$$ and$$\hbox {Rb}_2$$ molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when the trapping laser is present during the collision. We find that at a wavelength of 1064 nm the$$\hbox {Na}_2\hbox {Rb}_2$$ complex is quickly destroyed and thus that the$$^{23}\hbox {Na}^{87}$$ Rb molecules are rapidly lost. 
                        more » 
                        « less   
                    
                            
                            Direct observation of bimolecular reactions of ultracold KRb molecules
                        
                    
    
            Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. In this study, we took the contrasting approach of prolonging the lifetime of an intermediate by preparing reactant molecules in their lowest rovibronic quantum state at ultralow temperatures, thereby markedly reducing the number of exit channels accessible upon their mutual collision. Using ionization spectroscopy and velocity-map imaging of a trapped gas of potassium-rubidium (KRb) molecules at a temperature of 500 nanokelvin, we directly observed reactants, intermediates, and products of the reaction40K87Rb +40K87Rb → K2Rb2* → K2+ Rb2. Beyond observation of a long-lived, energy-rich intermediate complex, this technique opens the door to further studies of quantum-state–resolved reaction dynamics in the ultracold regime. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1734011
- PAR ID:
- 10125741
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 366
- Issue:
- 6469
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 1111-1115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Laser ablation tandem mass spectrometry is a burgeoning field forin situRb‐Sr geochronology. Here, we determined simultaneous isotope ratios of87Sr/86Sr and87Rb/86Sr in metamorphic biotite from western Maine, using an ESL™ imageGEO™193 excimer laser ablation system coupled to a Thermo Scientific™ Neoma™ MC‐ICP‐MS/MS. Measurements were made on Faraday cups with Rb+at mass 87; Sr isotopes were reacted with SF6gas and measured as SrF+at masses 103–107. Twenty‐two laser spots in biotite from a single sample yield a traditional Rb‐Sr isochron date of 289 ± 6 Ma. Time‐resolved signals reveal significant zoning in87Sr/86Sr and87Rb/86Sr within single spot analyses, which were used to construct single spot isochrons. Individual laser spots contain multiple isochronous subpopulations; some spots contain up to three distinct Rb‐Sr isochrons that are decoupled from variations in Rb/Sr. Thirty‐five isochron dates were determined using this sub‐spot approach, with87Sr/86Sr intercepts that systematically vary with Rb‐Sr date; two‐point isochrons were calculated for individual integrations (n= 780) based on these variable intercepts. Both methods yield age peaks at 303, 270 and 240 Ma. These data suggest that the Rb‐Sr system has the potential to record multiple heating, cooling or fluid‐alteration events spanning ~ 100 My within small domains in single biotite crystals.more » « less
- 
            Abstract The chemical dynamics of the elementary reaction of ground state atomic silicon (Si;3P) with germane (GeH4; X1A1) were unraveled in the gas phase under single collision condition at a collision energy of 11.8±0.3 kJ mol−1exploiting the crossed molecular beams technique contemplated with electronic structure calculations. The reaction follows indirect scattering dynamics and is initiated through an initial barrierless insertion of the silicon atom into one of the four chemically equivalent germanium‐hydrogen bonds forming a triplet collision complex (HSiGeH3;3i1). This intermediate underwent facile intersystem crossing (ISC) to the singlet surface (HSiGeH3;1i1). The latter isomerized via at least three hydrogen atom migrations involving exotic, hydrogen bridged reaction intermediates eventually leading to the H3SiGeH isomeri5. This intermediate could undergo unimolecular decomposition yielding the dibridged butterfly‐structured isomer1p1(Si(μ‐H2)Ge) plus molecular hydrogen through a tight exit transition state. Alternatively, up to two subsequent hydrogen shifts toi6andi7, followed by fragmentation of each of these intermediates, could also form1p1(Si(μ‐H2)Ge) along with molecular hydrogen. The overall non‐adiabatic reaction dynamics provide evidence on the existence of exotic dinuclear hydrides of main group XIV elements, whose carbon analog structures do not exist.more » « less
- 
            Abstract Dianionic hyponitrite (N2O22−) is often proposed, based on model complexes, as the key intermediate in reductive coupling of nitric oxide to nitrous oxide at the bimetallic active sites of heme‐copper oxidases and nitric oxide reductases. In this work, we examine the gas‐solid reaction of nitric oxide with the metal–organic framework CuI‐ZrTpmC* with a suite of in situ spectroscopies and density functional theory simulations, and identify an unusual chelating N2O2.−intermediate. These results highlight the advantage provided by site‐isolation in metal–organic frameworks (MOFs) for studying important reaction intermediates, and provide a mechanistic scenario compatible with the proposed one‐electron couple in these enzymes.more » « less
- 
            Abstract Some bacterial heme proteins catalyze the coupling of two NO molecules to generate N2O. We previously reported that a heme Fe–NO model engages in this N−N bond‐forming reaction with NO. We now demonstrate that (OEP)CoII(NO) similarly reacts with 1 equiv of NO in the presence of the Lewis acids BX3(X=F, C6F5) to generate N2O. DFT calculations support retention of the CoIIoxidation state for the experimentally observed adduct (OEP)CoII(NO⋅BF3), the presumed hyponitrite intermediate (P.+)CoII(ONNO⋅BF3), and the porphyrin π‐radical cation by‐product of this reaction, and that the π‐radical cation formation likely occurs at the hyponitrite stage. In contrast, the Fe analogue undergoes a ferrous‐to‐ferric oxidation state conversion during this reaction. Our work shows that cobalt hemes are chemically competent to engage in the NO‐to‐N2O conversion reaction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
