Abstract Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagneticTNwhile simultaneously enhancing the ferrimagneticTCby exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances bothTCandTNwith a growth rate of 74.4 K GPa−1and 14.4 K GPa−1respectively. Pressure unifies the dual metamagnetic transitions as illustrated throughp-Hphase diagrams at 140 and 200 K. Temperature-field-pressure (T-H,T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr= 246 K,Hcr= 23.3 kOe) and (Tcr= 435.8 K,pcr= 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure aroundTcrand a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application ofHandp.
more »
« less
Dual-phase superconductivity in high-pressure high-temperature synthesized TaNbZrHfTi
We report on a novel TaNbZrHfTi-based high entropy alloy (HEA) which demonstrates distinctive dual-phase superconductivity. The HEA was synthesized under high pressures and high temperatures starting from a ball milled mixture of elemental metals in a large-volume Paris–Edinburgh cell with P ≈ 6 GPa and T = 2300 K. The synthesized HEA is a phase mixture of BCC (NbTa)0.45(ZrHfTi)0.55 with Tc1 = 6 K and FCC (NbTa)0.04(ZrHfTi)0.96 with Tc2 = 3.75 K. The measured magnetic field parameters for the HEA are lower critical field, Hc1(0) = 31 mT, and a relatively high upper critical field, Hc2(0) = 4.92 T. This dual-phase system is further characterized by the presence of a second magnetization peak, or the fishtail effect, observed in the virgin magnetization curves. This phenomenon, which does not distort the field-dependent magnetization hysteresis loops, suggests intricate pinning mechanisms that could be potentially tuned for optimized performance. The manifestation of these unique features in HEA superconductivity reinforces phase-dependent superconductivity and opens new avenues in the exploration of novel superconducting materials.
more »
« less
- PAR ID:
- 10513753
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3–4–13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature, , varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero at 0.53–0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just above shows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure.more » « less
-
High-entropy alloys (HEAs) are a class of multi-element materials that exhibit unique structural and functional properties. This study reports on the synthesis and characterization of a superconducting HEA, (NbTa)0.55(HfTiZr)0.45 fabricated using the vacuum arc melting technique. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were employed to analyze the material's morphology and composition. X-ray diffraction analysis revealed a single-phase body-centered cubic (BCC) structure with a measured nanoindentation hardness of 6.4 GPa and Young's modulus of 132 GPa. This HEA superconductor was investigated by x-ray diffraction at Beamline 13BM-C, Advanced Photon Source, and the BCC phase was stable to the highest pressure of 50 GPa. Superconductivity was characterized by four-probe resistivity measurements in a quantum design physical property measurement system, yielding a superconducting transition temperature (Tc) of 7.2 K at ambient pressure and reaching a maximum of 10.1 K at the highest applied pressure of 23.6 GPa. The combination of high structural stability enhanced superconducting performance under pressure and superior mechanical properties highlights (NbTa)0.55(HfTiZr)0.45 as a promising superconductor under extreme environments.more » « less
-
Abstract Reentrant superconductivity is an uncommon phenomenon in which the destructive effects of magnetic field on superconductivity are mitigated, allowing a zero-resistance state to survive under conditions that would otherwise destroy it. Typically, the reentrant superconducting region derives from a zero-field parent superconducting phase. Here, we show that in UTe2crystals extreme applied magnetic fields give rise to an unprecedented high-field superconductor that lacks a zero-field antecedent. This high-field orphan superconductivity exists at angles offset between 29oand 42ofrom the crystallographicbtocaxes with applied fields between 37 T and 52 T. The stability of field-induced orphan superconductivity presented in this work defies both empirical precedent and theoretical explanation and demonstrates that high-field superconductivity can exist in an otherwise non-superconducting material.more » « less
-
In the physics of condensed matter, quantum critical phenomena and unconventional superconductivity are two major themes. In electron-doped cuprates, the low critical field (H C2 ) allows one to study the putative quantum critical point (QCP) at low temperature and to understand its connection to the long-standing problem of the origin of the high- T C superconductivity. Here we present measurements of the low-temperature normal-state thermopower ( S ) of the electron-doped cuprate superconductor La 2− x Ce x CuO 4 (LCCO) from x = 0.11–0.19. We observe quantum critical S / T versus l n ( 1 / T ) behavior over an unexpectedly wide doping range x = 0.15–0.17 above the QCP ( x = 0.14), with a slope that scales monotonically with the superconducting transition temperature ( T C with H = 0). The presence of quantum criticality over a wide doping range provides a window on the criticality. The thermopower behavior also suggests that the critical fluctuations are linked with T C . Above the superconductivity dome, at x = 0.19, a conventional Fermi-liquid S ∝ T behavior is found for T ≤ 40 K.more » « less
An official website of the United States government

