skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2310526

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interplay between configurational entropy and the enthalpy of ordered structures governs phase stability in compositionally complex alloys. In the refractory alloy Re0.6(NbTiZrHf)0.4, this balance is particularly delicate: pressure stabilizes a disordered body-centred-cubic (bcc) solid solution over the ambient hexagonal Laves phase via a martensitic route. Using in situ laser heating with synchrotron X-ray diffraction in a diamond-anvil cell, we demonstrate that the metastable bcc phase can be controllably transformed into a large-scale 2×2×2 B2-type superstructure with primitive-cubic symmetry (Pm3 ̅m). This long-period ordered phase is crystallographically distinct from conventional B2 ordering in multicomponent alloys, establishing a pathway to achieve chemical ordering from pressure-stabilized solid solutions. More broadly, these findings demonstrate that combining compression with subsequent thermal activation can unlock recoverable three-dimensional superstructures, offering new opportunities to tailor strength, transport properties, and stability in compositionally complex alloys. 
    more » « less
  2. At ambient conditions, the high-entropy alloy superconductor R⁢e0.6⁢(NbTiZrHf)0.4 exhibits exceptional mechanical properties among high-entropy alloys, with its hexagonal phase achieving nanoindentation hardness of 18.5 GPa. We report on a unique pressure-induced structural transformation from a hexagonal phase to a body-centered cubic (BCC) phase, revealed by synchrotron x-ray diffraction measurements up to 70 GPa. This first-order transition, accompanied by a 6.1% volume collapse, occurs at 44 GPa and results in a BCC structure with random site occupancy by the five constituent elements, which is remarkably retained upon decompression to ambient conditions. The transformation proceeds via a martensiticlike, diffusionless mechanism without elemental segregation, enabled by pressure-induced electronic redistribution and atomic-scale disorder. These findings demonstrate a rare case of metastable phase retention in a chemically complex alloy and offer new insights into structure-stability relationships under pressure. 
    more » « less
  3. High-entropy alloys (HEAs) are a class of multi-element materials that exhibit unique structural and functional properties. This study reports on the synthesis and characterization of a superconducting HEA, (NbTa)0.55(HfTiZr)0.45 fabricated using the vacuum arc melting technique. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were employed to analyze the material's morphology and composition. X-ray diffraction analysis revealed a single-phase body-centered cubic (BCC) structure with a measured nanoindentation hardness of 6.4 GPa and Young's modulus of 132 GPa. This HEA superconductor was investigated by x-ray diffraction at Beamline 13BM-C, Advanced Photon Source, and the BCC phase was stable to the highest pressure of 50 GPa. Superconductivity was characterized by four-probe resistivity measurements in a quantum design physical property measurement system, yielding a superconducting transition temperature (Tc) of 7.2 K at ambient pressure and reaching a maximum of 10.1 K at the highest applied pressure of 23.6 GPa. The combination of high structural stability enhanced superconducting performance under pressure and superior mechanical properties highlights (NbTa)0.55(HfTiZr)0.45 as a promising superconductor under extreme environments. 
    more » « less
  4. We report on a novel TaNbZrHfTi-based high entropy alloy (HEA) which demonstrates distinctive dual-phase superconductivity. The HEA was synthesized under high pressures and high temperatures starting from a ball milled mixture of elemental metals in a large-volume Paris–Edinburgh cell with P ≈ 6 GPa and T = 2300 K. The synthesized HEA is a phase mixture of BCC (NbTa)0.45(ZrHfTi)0.55 with Tc1 = 6 K and FCC (NbTa)0.04(ZrHfTi)0.96 with Tc2 = 3.75 K. The measured magnetic field parameters for the HEA are lower critical field, Hc1(0) = 31 mT, and a relatively high upper critical field, Hc2(0) = 4.92 T. This dual-phase system is further characterized by the presence of a second magnetization peak, or the fishtail effect, observed in the virgin magnetization curves. This phenomenon, which does not distort the field-dependent magnetization hysteresis loops, suggests intricate pinning mechanisms that could be potentially tuned for optimized performance. The manifestation of these unique features in HEA superconductivity reinforces phase-dependent superconductivity and opens new avenues in the exploration of novel superconducting materials. 
    more » « less