The classical Langevin Monte Carlo method looks for samples from a target distribution by descending the samples along the gradient of the target distribution. The method enjoys a fast convergence rate. However, the numerical cost is sometimes high because each iteration requires the computation of a gradient. One approach to eliminate the gradient computation is to employ the concept of "ensemble." A large number of particles are evolved together so the neighboring particles provide gradient information to each other. In this article, we discuss two algorithms that integrate the ensemble feature into LMC, and the associated properties.In particular, we find that if one directly surrogates the gradient using the ensemble approximation, the algorithm, termed Ensemble Langevin Monte Carlo, is unstable due to a high variance term. If the gradients are replaced by the ensemble approximations only in a constrained manner, to protect from the unstable points, the algorithm, termed Constrained Ensemble Langevin Monte Carlo, resembles the classical LMC up to an ensemble error but removes most of the gradient computation.
more »
« less
Langevin Quasi-Monte Carlo
Langevin Monte Carlo (LMC) and its stochastic gradient versions are powerful algorithms for sampling from complex high-dimensional distributions. To sample from a distribution with density π(θ) ∝ exp(−U(θ)), LMC iteratively generates the next sample by taking a step in the gradient direction ∇U with added Gaus- sian perturbations. Expectations w.r.t. the target distribution π are estimated by averaging over LMC samples. In ordinary Monte Carlo, it is well known that the estimation error can be substantially reduced by replacing independent random samples by quasi-random samples like low-discrepancy sequences. In this work, we show that the estimation error of LMC can also be reduced by using quasi- random samples. Specifically, we propose to use completely uniformly distributed (CUD) sequences with certain low-discrepancy property to generate the Gaussian perturbations. Under smoothness and convexity conditions, we prove that LMC with a low-discrepancy CUD sequence achieves smaller error than standard LMC. The theoretical analysis is supported by compelling numerical experiments, which demonstrate the effectiveness of our approach.
more »
« less
- Award ID(s):
- 2152780
- PAR ID:
- 10513783
- Publisher / Repository:
- NeurIPS 2023
- Date Published:
- Journal Name:
- 37th Conference on Neural Information Processing Systems (NeurIPS 2023).
- Format(s):
- Medium: X
- Location:
- New Orleans, LA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chiappa, Silvia; Calandra, Roberto (Ed.)Langevin Monte Carlo (LMC) is an iterative algorithm used to generate samples from a distribution that is known only up to a normalizing constant. The nonasymptotic dependence of its mixing time on the dimension and target accuracy is understood mainly in the setting of smooth (gradient-Lipschitz) log-densities, a serious limitation for applications in machine learning. In this paper, we remove this limitation, providing polynomial-time convergence guarantees for a variant of LMC in the setting of nonsmooth log-concave distributions. At a high level, our results follow by leveraging the implicit smoothing of the log-density that comes from a small Gaussian perturbation that we add to the iterates of the algorithm and controlling the bias and variance that are induced by this perturbation.more » « less
-
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) methods have been widely used to sample from certain probability distributions, incorporating (kernel) density derivatives and/or given datasets. Instead of exploring new samples from kernel spaces, this piece of work proposed a novel SGHMC sampler, namely Spectral Hamiltonian Monte Carlo (SpHMC), that produces the high dimensional sparse representations of given datasets through sparse sensing and SGHMC. Inspired by compressed sensing, we assume all given samples are low-dimensional measurements of certain high-dimensional sparse vectors, while a continuous probability distribution exists in such high-dimensional space. Specifically, given a dictionary for sparse coding, SpHMC first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the dictionary. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of SpHMC beyond baseline methods.more » « less
-
Many machine learning problems optimize an objective that must be measured with noise. The primary method is a first order stochastic gradient descent using one or more Monte Carlo (MC) samples at each step. There are settings where ill-conditioning makes second order methods such as limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) more effective. We study the use of randomized quasi-Monte Carlo (RQMC) sampling for such problems. When MC sampling has a root mean squared error (RMSE) of O(n−1/2) then RQMC has an RMSE of o(n−1/2) that can be close to O(n−3/2) in favorable settings. We prove that improved sampling accuracy translates directly to improved optimization. In our empirical investigations for variational Bayes, using RQMC with stochastic quasi-Newton method greatly speeds up the optimization, and sometimes finds a better parameter value than MC does.more » « less
-
We consider the problem of privately estimating a parameter 𝔼[h(X1,…,Xk)], where X1, X2, …, Xk are i.i.d. data from some distribution and h is a permutation-invariant function. Without privacy constraints, standard estimators are U-statistics, which commonly arise in a wide range of problems, including nonparametric signed rank tests, symmetry testing, uniformity testing, and subgraph counts in random networks, and can be shown to be minimum variance unbiased estimators under mild conditions. Despite the recent outpouring of interest in private mean estimation, privatizing U-statistics has received little attention. While existing private mean estimation algorithms can be applied to obtain confidence intervals, we show that they can lead to suboptimal private error, e.g., constant-factor inflation in the leading term, or even Θ(1/n) rather than O(1/n²) in degenerate settings. To remedy this, we propose a new thresholding-based approach using local Hájek projections to reweight different subsets of the data. This leads to nearly optimal private error for non-degenerate U-statistics and a strong indication of near-optimality for degenerate U-statistics.more » « less
An official website of the United States government

