The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, we characterize MP pollution from seven sites across the MSRS during both flash drought and non-drought periods using FTIR microspectroscopy (µ-FTIR). Additionally, we evaluate the impact of multiple water level conditions on MP polymer composition across five time points at a single sampling site. Of all MPs identified, polyethylene terephthalate (PET, 22%), resin (17%), and polyethylene (PE, 10%) were the most abundant polymers. Average concentrations ranged from 16 to 381 MPs/L across seven sites, with no significant difference in concentration between conditions. Irregular particles were the most common morphology, with most MPs falling in the lowest size range measured (30–100 μm). Drought condition had a significant (p < 0.001) impact on polymer composition, and polymers most strongly correlated with flash drought were mostly fluoropolymers. For the single sampling site, concentrations differed, but not significantly, across the five timepoints. These results demonstrate the complex relationship between MP concentration and drought condition, and also highlight the importance of fully characterizing MPs in environmental studies.
more »
« less
Microplastics in Atlantic Ribbed Mussels (Geukensia demissa) from the Delaware Inland Bays, USA
Due to the prevalence of plastic pollution in coastal ecosystems, aquatic organisms are at high risk for accumulating microplastics (MPs). Filter-feeding bivalves, such as mussels and oysters, may be exposed to, and subsequently accumulate, MPs due to the high volume of water they pass through their bodies. This study assessed the levels of MPs within Atlantic ribbed mussels (Geukensia demissa), a common filter feeder found along the United States Atlantic Coast, from 12 sites within Rehoboth Bay, Indian River Bay, and Little Assawoman Bay, collectively known as the Delaware Inland Bays. Composited mussels from each site were digested using potassium hydroxide and filtered. Microplastics were physically identified, sorted based on color, and counted using a digital microscope. Microplastics, almost entirely dominated by synthetic microfibers, were found in all mussels well above laboratory blanks. Across all sites, 40% of microfibers were black, and 27% of fibers were clear. The composite concentrations of MPs ranged from 0.25 to 2.06 particles/g wet tissue, with a mean of 0.08 ± 0.06. In general, higher concentrations were found in mussels collected at sites that were adjacent to more urbanized land use versus those from rural sites. At two sites, individual mussels, in addition to composites, were analyzed and had MP concentrations ranging from 11 to 69 particles/mussel. This study represents the first evaluation of MPs in this ecologically important coastal species and suggests its viability as a biomonitoring species for microplastic pollution.
more »
« less
- Award ID(s):
- 1757353
- PAR ID:
- 10513830
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Microplastics
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2673-8929
- Page Range / eLocation ID:
- 147 to 164
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Open dumping and burning of solid waste are widely practiced in underserved communities lacking access to solid waste management facilities; however, the generation of microplastics from these sites has been overlooked. We report elevated concentrations of microplastics (MPs) in soil of three solid waste open dump and burn sites: a single-family site in Tuttle, Oklahoma, USA, and two community-wide sites in Crow Agency and Lodge Grass, Montana, USA. We extracted, quantified, and characterized MPs from two soil depths (0-9 cm and 9-18 cm). The abundance of particles found at the three sites (35,000 to 69,200 particles kg-1 soil) equals or exceeds reported concentrations from currently understood sources of MPs including biosolids application and other agricultural practices. Attenuated total reflectance Fourier transformed infrared (ATR-FTIR) identified polyethylene as the dominant polymer across all sites (46.2%-84.8%). We also detected rayon (≤11.5%), polystyrene (up to 11.5%), polyethylene terephthalate (≤5.1), polyvinyl chloride (≤4.4%), polyester (≤3.1), and acrylic (≤2.2%). Burned MPs accounted for 76.3 to 96.9% of the MPs found in both community wide dumping sites. These results indicate that solid waste dumping and burning activities are a major source of thermally oxidized MPs for the surrounding terrestrial environment with potential to negatively affect underserved communities.more » « less
-
Tire wear particles (TWPs), a form of microplastics (MPs) pollution, are transported into waterbodies through stormwater runoff, leading to environmental pollution and impacts on associated biota. Here, we investigated the effectiveness of stormwater filter socks filled with rice husk biochar or pine tree woodchips in reducing TWP pollution in urban runoff in Oxford, Mississippi. Triplicate runoff samples were collected upstream and downstream of the biofilters at two sites during two storm events at peak flow within minutes of the start of the storm and after 30 min. Samples were analyzed for TWPs using a combination of stereomicroscopy, micro-attenuated total reflectance Fourier transform infrared spectroscopy (µ-ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Concentrations (TWPs/L) upstream of the biofilter were variable but highest at the start of the runoff, dropping from an average of 2811 ± 1700 to 476 ± 63 after 30 min at site 1 and from 2702 ± 353 to 2356 ± 884 at site 2. Biochar was more effective than woodchips (p < 0.05) at removing TWPs, reducing concentrations by an average of 97.6% (first use) and 85.3% (second use) compared to 66.2% and 54.2% for woodchips, respectively. Biochar was particularly effective at removing smaller TWPs (<100 µm). Both materials became less effective with use, suggesting fewer available trapping sites and the need for removal and replacement of the material with time. Overall, this study suggests that biochar and woodchips, alone or in combination, deserve further scrutiny as a potential cost-effective and sustainable method to mitigate the transfer of TWPs to aquatic ecosystems and associated biota.more » « less
-
Abstract Plastic is pervasive in modern economies and ecosystems. Freshwater fish ingest microplastics (i.e., particles <5 mm), but no studies have examined historical patterns of their microplastic consumption. Measuring the patterns of microplastic pollution in the past is critical for predicting future trends and for understanding the relationship between plastics in fish and the environment. We measured microplastics in digestive tissues of specimens collected from the years 1900–2017 and preserved in museum collections. We collected new fish specimens in 2018, along with water and sediment samples. We selected four species:Micropterus salmoides(largemouth bass),Notropis stramineus(sand shiner),Ictalurus punctatus(channel catfish), andNeogobius melanostomus(round goby) because each was well represented in museum collections, are locally abundant, and collected from urban habitats. For each individual, we dissected the digestive tissue from esophagus to anus, subjected tissue to peroxide oxidation, examined particles under a dissecting microscope, and used Raman spectroscopy to characterize the particles' chemical composition. No microplastics were detected in any fish prior to 1950. From mid‐century to 2018, microplastic concentrations showed a significant increase when data from all fish were considered together. All detected particles were fibers, and represented plastic polymers (e.g., polyester) along with mixtures of natural and synthetic textiles. For the specimens collected in 2018, microplastics in fish and sediment showed similar patterns across study sites, while water column microplastics showed no differences among locations. Overall, plastic pollution in common freshwater fish species is increasing and pervasive across individuals and species, and is likely related to changes in environmental concentrations. Museum specimens are an overlooked source for assessing historical patterns of microplastic pollution, and for predicting future trends in freshwater fish, thereby helping to sustain the health of commercial and recreational fisheries worldwide.more » « less
-
NA (Ed.)The proliferation of plastic pollution has led to the widespread accumulation of microplastics (MPs) in marine ecosystems. While surface sediment contamination is relatively well studied, knowledge of vertical MP distri- bution within sediment columns remains limited. This study examines the abundance, vertical distribution, and characteristics of MPs in subtidal and intertidal sediments of Panjang Island, Java Sea. Fifteen shallow (10 cm) and three deep (~100 cm) sediment cores were analyzed for MP abundance, morphology, size, color, and polymer using microscopy and ATR-FTIR. MPs were detected in all cores, with an average concentration of 0.49 ± 0.28 MPs g⁻¹ in surface sediments. The highest surface concentration (2.08 ± 0.22 MPs g⁻¹) occurred in the southwest, a sheltered site with greater anthropogenic influence, while the lowest (0.05 ± 0.07 MPs g⁻¹) was recorded in the northwest, a remote and less disturbed area. Fibers dominated particle types. White, black, and blue were the most common colors, and size distributions were skewed toward particles <1 mm. Polypropylene and polyethylene were the most frequent polymers, reflecting their widespread use and persistence. Vertical profiles revealed higher MP concentrations near the surface, indicating intensified inputs in recent decades. No MPs were detected below 70 cm, suggesting limited downward migration and marking the onset of contami- nation during the plastic era. This study also found MPs in deeper sediment layer, likely due to post-depositional processes such as bioturbation. These findings demonstrate that sediment cores serve as valuable archives of historical MP deposition, capturing both global production trends and local environmental influences, and provide a basis for targeted management strategies.more » « less
An official website of the United States government

