skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Misiurewicz polynomials and dynamical units, part II
Abstract Fix an integer$$d\ge 2$$ d 2 . The parameters$$c_0\in \overline{\mathbb {Q}}$$ c 0 Q ¯ for which the unicritical polynomial$$f_{d,c}(z)=z^d+c\in \mathbb {C}[z]$$ f d , c ( z ) = z d + c C [ z ] has finite postcritical orbit, also known asMisiurewiczparameters, play a significant role in complex dynamics. Recent work of Buff, Epstein, and Koch proved the first known cases of a long-standing dynamical conjecture of Milnor using their arithmetic properties, about which relatively little is otherwise known. Continuing our work from a companion paper, we address further arithmetic properties of Misiurewicz parameters, especially the nature of the algebraic integers obtained by evaluating the polynomial defining one such parameter at a different Misiurewicz parameter. In the most challenging such combinations, we describe a connection between such algebraic integers and the multipliers of associated periodic points. As part of our considerations, we also introduce a new class of polynomials we callp-special, which may be of independent number theoretic interest.  more » « less
Award ID(s):
2101925
PAR ID:
10513904
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Research in Number Theory
Volume:
10
Issue:
3
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ X = C 1 × C 2 of two curves over$$\mathbb {Q} $$ Q with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ J 1 ( Q ) J 2 ( Q ) ε CH 0 ( C 1 × C 2 ) is finite, where$$J_i$$ J i is the Jacobian variety of$$C_i$$ C i . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ E 1 , E 2 with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d for which the analogous map$$\varepsilon $$ ε has finite image. 
    more » « less
  2. Abstract Schinzel and Wójcik have shown that for every$$\alpha ,\beta \in \mathbb {Q}^{\times }\hspace{0.55542pt}{\setminus }\hspace{1.111pt}\{\pm 1\}$$ α , β Q × \ { ± 1 } , there are infinitely many primespwhere$$v_p(\alpha )=v_p(\beta )=0$$ v p ( α ) = v p ( β ) = 0 and where$$\alpha $$ α and$$\beta $$ β generate the same multiplicative group modp. We prove a weaker result in the same direction for algebraic numbers$$\alpha , \beta $$ α , β . Let$$\alpha , \beta \in \overline{\mathbb {Q}} ^{\times }$$ α , β Q ¯ × , and suppose$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\alpha )|\ne 1$$ | N Q ( α , β ) / Q ( α ) | 1 and$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\beta )|\ne 1$$ | N Q ( α , β ) / Q ( β ) | 1 . Then for some positive integer$$C = C(\alpha ,\beta )$$ C = C ( α , β ) , there are infinitely many prime idealsPof Equation missing<#comment/>where$$v_P(\alpha )=v_P(\beta )=0$$ v P ( α ) = v P ( β ) = 0 and where the group$$\langle \beta \bmod {P}\rangle $$ β mod P is a subgroup of$$\langle \alpha \bmod {P}\rangle $$ α mod P with$$[\langle \alpha \bmod {P}\rangle \,{:}\, \langle \beta \bmod {P}\rangle ]$$ [ α mod P : β mod P ] dividingC. A key component of the proof is a theorem of Corvaja and Zannier bounding the greatest common divisor of shiftedS-units. 
    more » « less
  3. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  4. Abstract Given a prime powerqand$$n \gg 1$$ n 1 , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ F q . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ F 2 to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some abelian varietyAover$${\mathbb {F}}_q$$ F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ q ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ q 5 , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ q 3 q log q is realizable. 
    more » « less
  5. Abstract We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group $$G_0$$ G 0 , a subsetEof $$G_0$$ G 0 , and two finite subsets$$F_1,F_2$$ F 1 , F 2 of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$ Z 2 × E can be tiled by translations of$$F_1,F_2$$ F 1 , F 2 . In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$ F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ Z 2 ). A similar construction also applies for$$G=\mathbb {Z}^d$$ G = Z d for sufficiently large d. If one allows the group$$G_0$$ G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. 
    more » « less