skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ethylene Electrosynthesis via Selective CO 2 Reduction: Fundamental Considerations, Strategies, and Challenges
Abstract The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising approach for reducing atmospheric carbon dioxide (CO2) emissions, allowing harmful CO2to be converted into more valuable carbon‐based products. On one hand, single carbon (C1) products have been obtained with high efficiency and show great promise for industrial CO2capture. However, multi‐carbon (C2+) products possess high market value and have demonstrated significant promise as potential products for CO2RR. Due to CO2RR's multiple pathways with similar equilibrium potentials, the extended reaction mechanisms necessary to form C2+products continue to reduce the overall selectivity of CO2‐to‐C2+electroconversion. Meanwhile, CO2RR as a whole faces many challenges relating to system optimization, owing to an intolerance for low surface pH, systemic stability and utilization issues, and a competing side reaction in the form of the H2evolution reaction (HER). Ethylene (C2H4) remains incredibly valuable within the chemical industry; however, the current established method for producing ethylene (steam cracking) contributes to the emission of CO2into the atmosphere. Thus, strategies to significantly increase the efficiency of this technology are essential. This review will discuss the vital factors influencing CO2RR in forming C2H4products and summarize the recent advancements in ethylene electrosynthesis.  more » « less
Award ID(s):
2119688
PAR ID:
10513932
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
14
Issue:
33
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The selectivity towards a specific C 2+ product, such as ethylene (C 2 H 4 ), is sensitive to the surface structure of copper (Cu) catalysts in carbon dioxide (CO 2 ) electro-reduction. The fundamental understanding of such sensitivity can guide the development of advanced electrocatalysts, although it remains challenging at the atomic level. Here we demonstrated that planar defects, such as stacking faults, could drive the electrocatalysis of CO 2 -to-C 2 H 4 conversion with higher selectivity and productivity than Cu(100) facets in the intermediate potential region (−0.50 ∼ −0.65 V vs. RHE). The unique right bipyramidal Cu nanocrystals containing a combination of (100) facets and a set of parallel planar defects delivered 67% faradaic efficiency (FE) for C 2 H 4 and a partial current density of 217 mA cm −2 at −0.63 V vs. RHE. In contrast, Cu nanocubes with exclusive (100) facets exhibited only 46% FE for C 2 H 4 and a partial current density of 87 mA cm −2 at an identical potential. Both ex situ CO temperature-programmed desorption and in situ Raman spectroscopy analysis implied that the stronger *CO adsorption on planar defect sites facilitates CO generation kinetics, which contributes to a higher surface coverage of *CO and in turn an enhanced reaction rate of C–C coupling towards C 2+ products, especially C 2 H 4 . 
    more » « less
  2. Abstract Electrochemical CO2reduction (CO2RR) on copper (Cu) shows promise for higher‐value products beyond CO. However, challenges such as the limited CO2solubility, high overpotentials, and the competing hydrogen evolution reaction (HER) in aqueous electrolytes hinder the practical realization. We propose a functionalized ionic liquid (IL) which generates ion‐CO2adducts and a hydrogen bond donor (HBD) upon CO2absorption to modulate CO2RR on Cu in a non‐aqueous electrolyte. As revealed by transient voltammetry, electrochemical impedance spectroscopy (EIS), and in situ surface‐enhanced Raman spectroscopy (SERS) complemented with image charge augmented quantum‐mechanical/molecular mechanics (IC‐QM/MM) computations, a unique microenvironment is constructed. In this microenvironment, the catalytic activity is primarily governed by the IL and HBD concentrations; former controlling the double layer thickness and the latter modulating the local proton availability. This translates to ample CO2availability, reduced overpotential, and suppressed HER where C4products are obtained. This study deepens the understanding of electrolyte effects in CO2RR and the role of IL ions towards electrocatalytic microenvironment design. 
    more » « less
  3. Abstract Converting CO2into industrially useful products is an appealing strategy for utilization of an abundant chemical resource. Electrochemical CO2reduction (eCO2R) offers a pathway to convert CO2into CO and ethylene, using renewable electricity. These products can be efficiently copolymerized by organometallic catalysts to generate polyketones. However, the conditions for these reactions are very different, presenting the challenge of coupling microenvironments typically encountered for the transformation of CO2into highly complex but desirable multicarbon products. Herein, we present a system to produce polyketone plastics entirely derived from CO2and water, where both the CO and C2H4intermediates are produced by eCO2R. In this system, a combination of Cu and Ag gas diffusion electrodes is used to generate a gas mixture with nearly equal concentrations of CO and C2H4, and a recirculatory CO2reduction loop is used to reach concentrations of above 11% each, leading to a current‐to‐polymer efficiency of up to 51% and CO2utilization of 14%. 
    more » « less
  4. Abstract Electrochemical reduction reaction of CO2(CO2RR) is a promising technology for alleviating the global warming caused by the emission of CO2. This technology, however, is still in the stage of finding efficient catalysts. The catalysts must be able to convert CO2to other carbon‐based products with high activity and selectivity to valuable chemicals. In this review, previous development of heteroatom‐doped metal‐free carbon materials (H‐CMs) is briefly summarized. Recent progress of CO2RR promoted by metal single‐atom catalysts (M‐SACs) is then discussed with emphasis on the synthesis of M‐SACs, the catalytic performance, and reaction mechanisms. The high temperature pyrolysis method and electrodeposition are attracting attentions recently to prepare M‐SACs with high metal loading on N‐doped carbon materials, a very active M‐SACs system for the CO2RR. Theoretical calculations of free energy change on active sites, the Operando X‐ray absorption near edge structure (XANES), and Bader charge analysis reveal a significant role of metal oxidation state and charge transfer between metal atoms and absorbed CO. The challenges and perspectives for the extensive applications of M‐SACs in CO2RR are also discussed in this review. 
    more » « less
  5. null (Ed.)
    The electrocatalytic carbon dioxide reduction reaction (CO 2 RR) to produce valuable fuels and chemicals with renewable energy inputs is an attractive route to convert intermittent green energy sources ( e.g. , solar and wind) to chemical energy, alleviate our dependence on fossil fuels, and simultaneously reduce net carbon dioxide emission. However, the generation of reduced multi-carbon products with high energy density and wide applicability from the CO 2 RR, such as oxygenates and hydrocarbons, suffers from high overpotential, slow reaction rate, and low selectivity due to its intrinsic multi-electron transfer nature. Moreover, the involved anodic oxygen evolution reaction (OER) also requires large overpotential and its product O 2 bears limited economic value. The potentially generated reactive oxygen species (ROS) during the OER may also degrade the membrane of a CO 2 reduction electrolyzer. Herein, we review the recent progress in novel integrated strategies to address the aforementioned challenges in the electrocatalytic CO 2 RR. These innovative strategies include (1) concurrent CO 2 electroreduction via co-feeding additional chemicals besides CO 2 gas, (2) tandem CO 2 electroreduction utilizing other catalysts for converting the in situ formed products from the CO 2 RR into more valuable chemicals, and (3) hybrid CO 2 electroreduction through integrating thermodynamically more favourable organic upgrading reactions to replace the anodic OER. We specifically highlight these novel integrated electrolyzer designs instead of focusing on nanostructured engineering of various electrocatalysts, in the hope of inspiring others to approach CO 2 electroreduction from a holistic perspective. The current challenges and future opportunities of electrocatalytic CO 2 reduction will also be discussed at the end. 
    more » « less