skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Little plutons between big plutons: probing transitions of magma flux in the Sierra Nevada batholith
Cretaceous plutons in the Sierra Nevada provide a ~35 million year record of magma production in the Cordillera. Some periods of Sierran magmatism were exceptionally productive: the 95-85 Ma Sierra Crest event and the 101-98 Ma period in the axial Sierra Nevada batholith yielded some of the largest plutons; however, the transitions into and out of these intervals of building of big plutons and high net magma flux periods are not well-studied. To better understand the the transitions between high levels of magma flux in the Sierra arc, we have focused on a suite of small, granite to granodiorite plutons in the Kings River and Monarch Divide regions of Kings Canyon National Park. Notable among them are the Tehipite Dome, White Divide, Kennedy Lakes, Dougherty Peak, Cartridge Pass, Arrow, and Pyramid plutons. These plutons lie between the large middle Cretaceous plutonic suites of the axial Sierra Nevada (e.g. Mitchell Suite) and the Mount Whitney and John Muir suites of the Sierra Crest. New U-Pb zircon of ~97-92 million years old among the plutons confirms their transitional placement and era. Geochemically, the granite suites show distinct geochemical arrays from the coeval granodiorite plutons, suggesting that the two are not related by fractionation or degree of magma mixing. Radiogenic and stable isotopes also point to these plutons as distinct from each other. It follows that the mixed bulk chemistry and isotopic character of the Kings River and Monarch intrusions likely reflects a switchover in source during diminished magma flux. Thus, they appear to be recording heterogeneous source and plumbing systems in the transition that may be otherwise erased during more efficient, high-flux magmatism.  more » « less
Award ID(s):
2105370
PAR ID:
10514000
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contributions of heat and/or mass from mafic magmas are commonly invoked in models of voluminous granodiorite and andesite generation in magmatic and volcanic arcs worldwide. However, mafic intrusions are a volumetrically minor component in most arc batholiths. This is the case in the Sierra Nevada batholith, California, USA, where gabbro and diorite plutons are smaller and less abundant than the granitoid suites that make up the bulk of the batholith. Here, we constrain the timing and geochemistry of mafic intrusions in the Sierra Nevada batholith to assess the role of these compositions in arc batholith construction. Previous detailed studies on a limited number of mafic intrusions demonstrate that they formed penecontemporaneously with the felsic batholith, but there is a need for a broader survey of mafic plutons using modern geochronological techniques. New U-Pb zircon ages for 13 gabbro to diorite plutons and geochemistry from 17 mafic intrusions in the eastern Sierra Nevada batholith document two main episodes of mafic magmatism in the eastern Sierra Nevada batholith, from 168 Ma to 145 Ma and from 100 Ma to 89 Ma. These episodes overlap with the ages of granitoid plutons in the eastern Sierra Nevada batholith, including the Late Jurassic Palisade Crest and Late Cretaceous John Muir intrusive suites, in addition to other felsic plutons dated in the eastern Sierra Nevada batholith. Non-primitive mineral compositions in the mafic bodies indicate that their parental magmas are the evolved products of mantle-derived basalts that first differentiated in the lower crust prior to ascent and crystallization in the upper crust. The presence of rocks with cumulate textures, as well as a wide range of bulk-rock compositions (SiO2 wt% 38−64, Mg# 39−74), show that magmatic differentiation continued within each mafic body after intrusion into the upper crust. Sr/Y ratios in melt-like (i.e., non-cumulate) mafic samples suggest that the crustal thickness of the Sierra Nevada batholith was roughly 30 km in the Early Jurassic and increased to ∼44 km by the Late Cretaceous. Concomitant intrusion of mafic melts along with voluminous granitoid plutons supports mantle melting as a major contributor of heat and magmatic volumes to the crust during construction of the eastern Sierra Nevada batholith. 
    more » « less
  2. The Sierra Nevada Batholith (SNB) records copious Mesozoic magmatism and is an important touchstone for understanding crustal growth at continental convergent margins. Recent research in the SNB has focused on defining magmatic cyclicity and arc “flare ups” based on the ages, magma production rates, and radiogenic isotope heterogeneities of the plutonic and volcanic rocks found throughout the batholith. Two main intervals at ca. 170–148 Ma and ca. 125–85 Ma delivered >95% of the magmas in the exposed plutonic bulk in the SNB and suggest elevated emplacement rates and hotter-than-usual magmas, though the Cretaceous is by far the most productive era and the most promising for understanding the factors modulating magmatic flux. The mid-Cretaceous of the Sierra (ca. 105–98 Ma) saw the appearance of conspicuous, high-silica (>65 wt.% SiO2; average ~71%) granitic plutons of similar chemical nature that span a large geographic area, breaking the well-established west-to-east “younging” trend found in the more common rocks of intermediate compositions. This study focuses on thirteen of these high-silica granites: the Bullfrog, Independence, McGann, Rawson Creek, and Spook Plutons of the eastern Sierra; and the Shaver Intrusive Suite, Grant Grove, Case Mountain, Coyote Pass, Dennison Peak, and Frys Point Plutons of the western/central Sierra. Whole rock geochemistry, zircon trace elements, and radiogenic isotope ratios (Sr and Nd) in these high-silica granites show some transitional patterns with other contemporaneous and geographically related plutons of intermediate compositions, suggesting fractionation trajectories; however, some distinct dissimilarities are observed, including: 1) elevated, but highly varied initial 87Sr/86Sr ratios, 2) elevated fluorine in granites, and 3) hotter apparent zircon saturation conditions. These geochemical data, hotter conditions, and higher flux suggest that mantle conditions favored more crustal melting and crustal source input than at any other time in the Cretaceous. We conclude that the granitic outburst of the mid-Cretaceous was a flare up like no other. 
    more » « less
  3. Abstract Tectonic interpretation of the central Sierra Nevada—whether the crest of the Sierra Nevada (California, USA) was uplifted in the late Cenozoic or whether the range has undergone continuous down-wearing since the Late Cretaceous—is controversial, since there is no obvious tectonic explanation for renewed uplift. The strongest direct evidence for late Cenozoic uplift of the central Sierra Nevada comes from study of the Trachyandesite of Kennedy Table, which followed the course of the Miocene San Joaquin River but has a steeper gradient than the modern river. Early workers attributed this steeper gradient to tilting of the Sierra Nevada block since the late Miocene, resulting in 2 km of range-crest uplift. However, this interpretation has been contested on grounds that the Miocene river gradient had to be assumed and that the Sierran Batholith could have warped during tilting, thus failing to uplift the range crest. The objective of this study was to obtain quantitative data that test these criticisms. The Trachyandesite of Kennedy Table is a chain of 33 remnants of a single lava flow as thick as 65 m, preserved for 21 km from Squaw Leap to Little Dry Creek, close to the modern San Joaquin River in the foothills of the Sierra Nevada. Several remnants lie on fluvial gravel of the late Miocene San Joaquin River. Early workers speculated that the lava concealed its own (unrecognized) vent, but in 2011, we identified the vent on the Middle Fork of the San Joaquin River, 13.5 km south of Deadman Pass and 70 km northeast of Kennedy Table. The vent complex intrudes Cretaceous granite, has 285 m relief, and is an intricately jointed intrusion that grades up into a glassy lava flow. Composition (58% SiO2) and 40Ar/39Ar age (9.3 Ma) are identical at the vent and downstream. Basal elevations of remnants were recorded, and the present-day basal gradients of several were adjusted for apparent dip and projected along a vertical plane at 220° (the estimated tilt azimuth). The basal gradients are far steeper than that of the modern river, but they differ slightly from reach to reach and are thus inconsistent measures of the post-Miocene tilt. Likewise, relief eroded atop most remnants renders modeling of upper surfaces suspect. At Little Dry Creek, however, a chain of nine remnants rests on fluvial floodplain sand and gravel; this chain trends 230°, and its smooth basal contact now dips 1.36° (adjusted at 220°). Projection of this dip 89 km from the 207 m base of the most distal remnant at Little Dry Creek to the vent intrusion falls far below the 2760 m intrusion-to-lava-flow transition near the Sierran crest, showing that the Sierran block has not undergone pronounced convex warping. Using elevation data on paleoriver meanders preserved by the lava flow, we show that the paleogradient has a cosine dependence on meander-section azimuth, indicating tilting. Subtraction of 1.07° of dip restores the data to an azimuth-independent configuration, indicating total tilting since 9.3 Ma of 1.07° and an original large-scale gradient of 0.46°, similar to the published value of 0.33° at Squaw Leap, but larger than the previously obtained value of 0.057° at Little Dry Creek. Subtraction of those Miocene estimates from the observable 1.643° tilt along the section from Little Dry Creek to the vent yields vent uplift of 2464 m (for 0.057°), 1835 m (for 0.46°), and 2040 m (for 0.33°). Confirmation of earlier assumptions regarding Miocene river gradient and block rigidity greatly strengthens the case for ~2 km of late Cenozoic uplift of the central Sierra Nevada crest. 
    more » « less
  4. null (Ed.)
    Abstract The 119 Ma Dinkey Dome pluton in the central Sierra Nevada Batholith is a peraluminous granite and contains magmatic garnet and zircon that are complexly zoned with respect to oxygen isotope ratios. Intracrystalline SIMS analysis tests the relative importance of magmatic differentiation processes vs. partial melting of metasedimentary rocks. Whereas δ18O values of bulk zircon concentrates are uniform across the entire pluton (7.7‰ VSMOW), zircon crystals are zoned in δ18O by up to 1.8‰, and when compared to late garnet, show evidence of changing magma chemistry during multiple interactions of the magma with wall rock during crustal transit. The evolution from an early high-δ18O magma [δ18O(WR) = 9.8‰] toward lower values is shown by high-δ18O zircon cores (7.8‰) and lower δ 18O rims (6.8‰). Garnets from the northwest side of the pluton show a final increase in δ18O with rims reaching 8.1‰. In situ REE measurements show zircon is magmatic and grew before garnets. Additionally, δ18O in garnets from the western side of the pluton are consistently higher (avg = 7.3‰) relative to the west (avg = 5.9‰). These δ18O variations in zircon and garnet record different stages of assimilation and fractional crystallization whereby an initially high-δ18O magma partially melted low-δ18O wallrock and was subsequently contaminated near the current level of emplacement by higher δ18O melts. Collectively, the comparison of δ18O zoning in garnet and zircon shows how a peraluminous pluton can be constructed from multiple batches of variably contaminated melts, especially in early stages of arc magmatism where magmas encounter significant heterogeneity of wall-rock assemblages. Collectively, peraluminous magmas in the Sierran arc are limited to small <100 km2 plutons that are intimately associated with metasedimentary wall rocks and often surrounded by later and larger metaluminous tonalite and granodiorite plutons. The general associations suggest that early-stage arc magmas sample crustal heterogeneities in small melt batches, but that with progressive invigoration of the arc, such compositions are more effectively blended with mantle melts in source regions. Thus, peraluminous magmas provide important details of the nascent Sierran arc and pre-batholithic crustal structure. 
    more » « less
  5. The Mineral King pendant in the Sierra Nevada batholith (California, USA) contains at least four rhyolite units that record high-silica volcanism during magmatic lulls in the Sierran magmatic arc. U-Th-Pb, trace element (single crystal spot analyses via sensitive high-resolution ion microprobe–reverse geometry, SHRIMP-RG), and bulk oxygen isotope analyses of zircon from these units provide a record of the age and compositional properties of the magmas that is not available from whole-rock analysis because of intense hydrothermal alteration of the pendant. U-Pb spot ages reveal that the Mineral King rhyolites are from two periods, the Early Jurassic (197 Ma) and the Early Cretaceous (134–136 Ma). These two rhyolite packages have zircons with distinct compositional trends for trace elements and δ18O; the Early Jurassic rhyolite shows less evidence of crustal influences on the rhyolites and the Early Cretaceous rhyolite shows evidence of increasing crustal influences and crystal recycling. These rhyolites capture evidence of magmatism during two periods of low magmatic flux in the Sierran Arc; however, they still show that magmas were derived from interactions of maturing continental crust, increasing from the Early to Late Jurassic. This finding likely reflects the transition of the North America margin from one of docking island arcs in the Early Jurassic to one of a more mature continental arc in the Early Cretaceous. This also shows the utility in examining zircon spot ages combined with trace element and bulk isotopic composition to unlock the petrogenetic history of altered volcanic rocks. 
    more » « less