The Ash Mountain Complex (AMC) in the western Sierra Nevada batholith (SNB; California, USA) is an exposure of six compositionally diverse intrusive lithologies with clear crosscutting relationships that permit a focused investigation of magma source characteristics and the relative roles of petrogenetic processes on the evolution of the system. We use new field observations, zircon U-Pb dates, major and trace element data, and Sr-Nd-Pb isotopic data to develop a model that can be applied to similar SNB intrusive suites. Stage 1 units, emplaced ca. 105 Ma, consist of two gabbros, a gabbrodiorite, and a granite. Stage 2 and stage 3 units were emplaced ca. 104 Ma and ca. 103 Ma, respectively, and are granites. We suggest that stage 1 gabbroids were derived by partial melting of lithospheric mantle, whereas coeval felsic magmas were derived by partial melting of a mafic, juvenile crustal source. Stage 2 and stage 3 granitoids were derived from similar sources that generated stage 1 granitoids, but there was greater input from evolved crust. Fractionation and/or assimilation played only a minor role in system evolution. Past studies of SNB magmas have come to conflicting conclusions about the petrogenesis of intermediate magmas that dominate the batholith; we hypothesize that mafic and felsic end members of the AMC could represent end members in mixing processes that generate these magmas. The timing of emplacement of the AMC coincides with a transition of magmatic style in the SNB, from smaller volume magmatic suites with mixed mantle and crustal sources to larger volume magmatic suites derived from greater proportions of crust.
more »
« less
Mafic intrusions record mantle inputs and crustal thickness in the eastern Sierra Nevada batholith, California, USA
Contributions of heat and/or mass from mafic magmas are commonly invoked in models of voluminous granodiorite and andesite generation in magmatic and volcanic arcs worldwide. However, mafic intrusions are a volumetrically minor component in most arc batholiths. This is the case in the Sierra Nevada batholith, California, USA, where gabbro and diorite plutons are smaller and less abundant than the granitoid suites that make up the bulk of the batholith. Here, we constrain the timing and geochemistry of mafic intrusions in the Sierra Nevada batholith to assess the role of these compositions in arc batholith construction. Previous detailed studies on a limited number of mafic intrusions demonstrate that they formed penecontemporaneously with the felsic batholith, but there is a need for a broader survey of mafic plutons using modern geochronological techniques. New U-Pb zircon ages for 13 gabbro to diorite plutons and geochemistry from 17 mafic intrusions in the eastern Sierra Nevada batholith document two main episodes of mafic magmatism in the eastern Sierra Nevada batholith, from 168 Ma to 145 Ma and from 100 Ma to 89 Ma. These episodes overlap with the ages of granitoid plutons in the eastern Sierra Nevada batholith, including the Late Jurassic Palisade Crest and Late Cretaceous John Muir intrusive suites, in addition to other felsic plutons dated in the eastern Sierra Nevada batholith. Non-primitive mineral compositions in the mafic bodies indicate that their parental magmas are the evolved products of mantle-derived basalts that first differentiated in the lower crust prior to ascent and crystallization in the upper crust. The presence of rocks with cumulate textures, as well as a wide range of bulk-rock compositions (SiO2 wt% 38−64, Mg# 39−74), show that magmatic differentiation continued within each mafic body after intrusion into the upper crust. Sr/Y ratios in melt-like (i.e., non-cumulate) mafic samples suggest that the crustal thickness of the Sierra Nevada batholith was roughly 30 km in the Early Jurassic and increased to ∼44 km by the Late Cretaceous. Concomitant intrusion of mafic melts along with voluminous granitoid plutons supports mantle melting as a major contributor of heat and magmatic volumes to the crust during construction of the eastern Sierra Nevada batholith.
more »
« less
- Award ID(s):
- 2105371
- PAR ID:
- 10537717
- Publisher / Repository:
- Geological Society of America Bulletin
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Sierra Nevada Batholith (SNB) records copious Mesozoic magmatism and is an important touchstone for understanding crustal growth at continental convergent margins. Recent research in the SNB has focused on defining magmatic cyclicity and arc “flare ups” based on the ages, magma production rates, and radiogenic isotope heterogeneities of the plutonic and volcanic rocks found throughout the batholith. Two main intervals at ca. 170–148 Ma and ca. 125–85 Ma delivered >95% of the magmas in the exposed plutonic bulk in the SNB and suggest elevated emplacement rates and hotter-than-usual magmas, though the Cretaceous is by far the most productive era and the most promising for understanding the factors modulating magmatic flux. The mid-Cretaceous of the Sierra (ca. 105–98 Ma) saw the appearance of conspicuous, high-silica (>65 wt.% SiO2; average ~71%) granitic plutons of similar chemical nature that span a large geographic area, breaking the well-established west-to-east “younging” trend found in the more common rocks of intermediate compositions. This study focuses on thirteen of these high-silica granites: the Bullfrog, Independence, McGann, Rawson Creek, and Spook Plutons of the eastern Sierra; and the Shaver Intrusive Suite, Grant Grove, Case Mountain, Coyote Pass, Dennison Peak, and Frys Point Plutons of the western/central Sierra. Whole rock geochemistry, zircon trace elements, and radiogenic isotope ratios (Sr and Nd) in these high-silica granites show some transitional patterns with other contemporaneous and geographically related plutons of intermediate compositions, suggesting fractionation trajectories; however, some distinct dissimilarities are observed, including: 1) elevated, but highly varied initial 87Sr/86Sr ratios, 2) elevated fluorine in granites, and 3) hotter apparent zircon saturation conditions. These geochemical data, hotter conditions, and higher flux suggest that mantle conditions favored more crustal melting and crustal source input than at any other time in the Cretaceous. We conclude that the granitic outburst of the mid-Cretaceous was a flare up like no other.more » « less
-
Abstract We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, an ~500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada Batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate (1) the timing and rates of Mesozoic arc construction, (2) mechanisms of sediment incorporation into the lower crust, and (3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use U-Pb detrital zircon geochronology of four quartzites and one metatexite migmatite to investigate the origin of the lower-crustal Cucamonga metasedimentary sequence, and U-Pb zircon petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga metasedimentary sequence shares broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a late Paleozoic to early Mesozoic forearc or intra-arc basin marginal to the Southern California Batholith. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750 °C), metamorphic events at ca. 124 Ma and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 Ma to 75 Ma and culminated in a magmatic surge from ca. 90 Ma to 75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by the emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event.more » « less
-
Little plutons between big plutons: probing transitions of magma flux in the Sierra Nevada batholithCretaceous plutons in the Sierra Nevada provide a ~35 million year record of magma production in the Cordillera. Some periods of Sierran magmatism were exceptionally productive: the 95-85 Ma Sierra Crest event and the 101-98 Ma period in the axial Sierra Nevada batholith yielded some of the largest plutons; however, the transitions into and out of these intervals of building of big plutons and high net magma flux periods are not well-studied. To better understand the the transitions between high levels of magma flux in the Sierra arc, we have focused on a suite of small, granite to granodiorite plutons in the Kings River and Monarch Divide regions of Kings Canyon National Park. Notable among them are the Tehipite Dome, White Divide, Kennedy Lakes, Dougherty Peak, Cartridge Pass, Arrow, and Pyramid plutons. These plutons lie between the large middle Cretaceous plutonic suites of the axial Sierra Nevada (e.g. Mitchell Suite) and the Mount Whitney and John Muir suites of the Sierra Crest. New U-Pb zircon of ~97-92 million years old among the plutons confirms their transitional placement and era. Geochemically, the granite suites show distinct geochemical arrays from the coeval granodiorite plutons, suggesting that the two are not related by fractionation or degree of magma mixing. Radiogenic and stable isotopes also point to these plutons as distinct from each other. It follows that the mixed bulk chemistry and isotopic character of the Kings River and Monarch intrusions likely reflects a switchover in source during diminished magma flux. Thus, they appear to be recording heterogeneous source and plumbing systems in the transition that may be otherwise erased during more efficient, high-flux magmatism.more » « less
-
The Mineral King pendant in the Sierra Nevada batholith (California, USA) contains at least four rhyolite units that record high-silica volcanism during magmatic lulls in the Sierran magmatic arc. U-Th-Pb, trace element (single crystal spot analyses via sensitive high-resolution ion microprobe–reverse geometry, SHRIMP-RG), and bulk oxygen isotope analyses of zircon from these units provide a record of the age and compositional properties of the magmas that is not available from whole-rock analysis because of intense hydrothermal alteration of the pendant. U-Pb spot ages reveal that the Mineral King rhyolites are from two periods, the Early Jurassic (197 Ma) and the Early Cretaceous (134–136 Ma). These two rhyolite packages have zircons with distinct compositional trends for trace elements and δ18O; the Early Jurassic rhyolite shows less evidence of crustal influences on the rhyolites and the Early Cretaceous rhyolite shows evidence of increasing crustal influences and crystal recycling. These rhyolites capture evidence of magmatism during two periods of low magmatic flux in the Sierran Arc; however, they still show that magmas were derived from interactions of maturing continental crust, increasing from the Early to Late Jurassic. This finding likely reflects the transition of the North America margin from one of docking island arcs in the Early Jurassic to one of a more mature continental arc in the Early Cretaceous. This also shows the utility in examining zircon spot ages combined with trace element and bulk isotopic composition to unlock the petrogenetic history of altered volcanic rocks.more » « less
An official website of the United States government

