skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lasing in Zn-doped GaAs nanowires on an iron film
Abstract In this work, we demonstrate optically pumped lasing in highly Zn-doped GaAs nanowires (NWs) lying on an iron film. The conically shaped NWs are first covered with an 8 nm thick Al2O3film to prevent atmospheric oxidation and mitigate band-bending effects. Multimode and single-mode lasing have been observed for NWs with a length greater or smaller than 2μm, respectively. Finite difference time domain calculations reveal a weak electric field enhancement in the Al2O3layer at the NW/iron film interface for the lasing modes. The high Zn acceptor concentration in the NWs provides enhanced radiative efficiency and enables lasing on the iron film despite plasmonic losses. Our results open avenues for integrating NW lasers on ferromagnetic substrates to achieve new functionalities, such as magnetic field-induced modulation.  more » « less
Award ID(s):
2004768
PAR ID:
10514002
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Institute of Physics (IOP)
Date Published:
Journal Name:
Nanotechnology
Volume:
34
Issue:
44
ISSN:
0957-4484
Page Range / eLocation ID:
445201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optically pumped lasing from highly Zn-doped GaAs nanowires lying on an Au film substrate and from Au-coated nanowires has been demonstrated up to room temperature. The conically shaped GaAs nanowires were first coated with a 5 nm thick Al 2 O 3 shell to suppress atmospheric oxidation and band-bending effects. Doping with a high Zn concentration increases both the radiative efficiency and the material gain and leads to lasing up to room temperature. A detailed analysis of the observed lasing behavior, using finite-difference time domain simulations, reveals that the lasing occurs from low loss hybrid modes with predominately photonic character combined with electric field enhancement effects. Achieving low loss lasing from NWs on an Au film and from Au coated nanowires opens new prospects for on-chip integration of nanolasers with new functionalities including electro-optical modulation, conductive shielding, and polarization control. 
    more » « less
  2. Abstract This work evaluates the passivation efficacy of thermal atomic layer deposited (ALD) Al 2 O 3 dielectric layer on self-catalyzed GaAs 1- x Sb x nanowires (NWs) grown using molecular beam epitaxy. A detailed assessment of surface chemical composition and optical properties of Al 2 O 3 passivated NWs with and without prior sulfur treatment were studied and compared to as-grown samples using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature photoluminescence (PL) spectroscopy. The XPS measurements reveal that prior sulfur treatment followed by Al 2 O 3 ALD deposition abates III–V native oxides from the NW surface. However, the degradation in 4K-PL intensity by an order of magnitude observed for NWs with Al 2 O 3 shell layer compared to the as-grown NWs, irrespective of prior sulfur treatment, suggests the formation of defect states at the NW/dielectric interface contributing to non-radiative recombination centers. This is corroborated by the Raman spectral broadening of LO and TO Raman modes, increased background scattering, and redshift observed for Al 2 O 3 deposited NWs relative to the as-grown. Thus, our work seems to indicate the unsuitability of ALD deposited Al 2 O 3 as a passivation layer for GaAsSb NWs. 
    more » « less
  3. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5 Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm. Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854. Acknowledgment This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS. Figure 1 
    more » « less
  4. Abstract We report the perpendicular critical fieldHc2properties of disordered Re-Al bilayers via magneto-transport measurements. The bilayers consisted of a d Re = 3 nm bottom layer of Re and an upper Al layer with thickness varying betweendAl = 0 − 3 nm. We find that in this range of Al thicknesses, the bilayer transition temperatureTcincreases with increasing Al thickness, although their monolayer counterparts have T c Re > T c Al . Furthermore,Hc2of the bilayers has a local maximum at an Al coverage of 1.5 nm with a critical field that is 50% larger than that of the standalone 3 nm Re film. At higher Al thicknessesHc2drops rapidly but remains more than an order of magnitude greater that that of comparable thickness standalone Al film. Our data show that a thin, disordered Re under-layer can dramatically increase the magnetic field tolerance of the Al over-layer. This would allow one to retain the desirable chemical and metallurgical properties of Al without sacrificing high field compatibility in quantum circuits, such as topological qubit devices and superinductor circuits. 
    more » « less
  5. Abstract The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr‐doped (Bi,Sb)2Te3(CBST) grown on an uncompensated antiferromagnetic insulator Al‐doped Cr2O3. Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al‐Cr2O3surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange‐biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al‐Cr2O3layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH‐based spintronics. 
    more » « less