We consider the focussing fractional periodic Korteweg–deVries (fKdV) and fractional periodic non-linear Schrödinger equations (fNLS) equations, with L 2 sub-critical dispersion. In particular, this covers the case of the periodic KdV and Benjamin-Ono models. We construct two parameter family of bell-shaped travelling waves for KdV (standing waves for NLS), which are constrained minimizers of the Hamiltonian. We show in particular that for each $$\lambda > 0$$ , there is a travelling wave solution to fKdV and fNLS $$\phi : \|\phi \|_{L^2[-T,T]}^2=\lambda $$ , which is non-degenerate. We also show that the waves are spectrally stable and orbitally stable, provided the Cauchy problem is locally well-posed in H α/2 [ − T , T ] and a natural technical condition. This is done rigorously, without any a priori assumptions on the smoothness of the waves or the Lagrange multipliers.
more »
« less
Spectral stability of periodic waves for the Zakharov system
This paper is concerned with the stability of periodic traveling waves of dnoidal type, of the Zakharov system. This problem was considered in a study of Angulo and Brango [Nonlinearity 24, 2913 (2011)]. In particular, it was shown that under a technical condition on the perturbation, such waves are orbitally stable, with respect to perturbations of the same period. Our main result fills up the gap created by the aforementioned technical condition. More precisely, we show that for all natural values of the parameters, the periodic dnoidal waves are spectrally stable.
more »
« less
- Award ID(s):
- 2210867
- PAR ID:
- 10514010
- Publisher / Repository:
- Spectral stability of periodic waves for the Zakharov system
- Date Published:
- Journal Name:
- Journal of Mathematical Physics
- Volume:
- 64
- Issue:
- 8
- ISSN:
- 0022-2488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points.more » « less
-
Abstract The parametric decay instability of Alfvén waves has been widely studied, but few investigations have examined wave packets of finite size and the effect of different boundary conditions on the growth rate. In this paper, we perform a linear analysis of circular and arc-polarized wave trains and wave packets in periodic and open boundary systems in a low-βplasma. We find that both types of wave are 3–5 times more stable in open boundary conditions compared to periodic. Additionally, once the wave packet widthℓbecomes smaller than the system sizeL, the growth rate decreases nearly with a power lawγ∝ℓ/L. This study demonstrates that the stability of a pump wave cannot be separated from the laboratory settings, and that the growth rate of daughter waves depends on the conditions downstream and upstream of the pump wave and on the fraction of volume it fills. Our results can explain simulations and experiments of localized Alfvén waves. They also suggest that Alfvénic fluctuations in the solar wind, including sharp impulses known as switchbacks, can be more stable than traditional theory suggests depending on wind conditions.more » « less
-
We study the dynamics of a ferrofluid thin film confined in a Hele-Shaw cell, and subjected to a tilted non-uniform magnetic field. It is shown that the interface between the ferrofluid and an inviscid outer fluid (air) supports travelling waves, governed by a novel modified Kuramoto–Sivashinsky-type equation derived under the long-wave approximation. The balance between energy production and dissipation in this long-wave equation allows for the existence of dissipative solitons. These permanent travelling waves’ propagation velocity and profile shape are shown to be tunable via the external magnetic field. A multiple-scale analysis is performed to obtain the correction to the linear prediction of the propagation velocity, and to reveal how the nonlinearity arrests the linear instability. The travelling periodic interfacial waves discovered are identified as fixed points in an energy phase plane. It is shown that transitions between states (wave profiles) occur. These transitions are explained via the spectral stability of the travelling waves. Interestingly, multi-periodic waves, which are a non-integrable analogue of the double cnoidal wave, are also found to propagate under the model long-wave equation. These multi-periodic solutions are investigated numerically, and they are found to be long-lived transients, but ultimately abruptly transition to one of the stable periodic states identified.more » « less
-
We propose a new two-parameter family of hybrid traveling-standing (TS) water waves in infinite depth that evolve to a spatial translation of their initial condition at a later time. We use the square root of the energy as an amplitude parameter and introduce a traveling parameter that naturally interpolates between pure traveling waves moving in either direction and pure standing waves in one of four natural phase configurations. The problem is formulated as a two-point boundary value problem and a quasi-periodic torus representation is presented that exhibits TS-waves as nonlinear superpositions of counter-propagating traveling waves. We use an overdetermined shooting method to compute nearly 50,000 TS-wave solutions and explore their properties. Examples of waves that periodically form sharp crests with high curvature or dimpled crests with negative curvature are presented. We find that pure traveling waves maximize the magnitude of the horizontal momentum among TS-waves of a given energy. Numerical evidence suggests that the two-parameter family of TS-waves contains many gaps and disconnections where solutions with the given parameters do not exist. Some of these gaps are shown to persist to zero-amplitude in a fourth-order perturbation expansion of the solutions in powers of the amplitude parameter. Analytic formulas for the coefficients of this perturbation expansion are identified using Chebyshev interpolation of solutions computed in quadruple-precision.more » « less
An official website of the United States government

