skip to main content


This content will become publicly available on June 7, 2025

Title: Epidemic forecast follies
We introduce a simple multiplicative model to describe the temporal behavior and the ultimate outcome of an epidemic. Our model accounts, in a minimalist way, for the competing influences of imposing public-health restrictions when the epidemic is severe, and relaxing restrictions when the epidemic is waning. Our primary results are that different instances of an epidemic with identical starting points have disparate outcomes and each epidemic temporal history is strongly fluctuating.  more » « less
Award ID(s):
1910736
PAR ID:
10514025
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Springer
Date Published:
Journal Name:
npj Complexity
Volume:
1
Issue:
1
ISSN:
2731-8753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this letter, we propose an epidemic model over temporal networks that explicitly encapsulates two different control actions. We develop our model within the theoretical framework of activity driven networks (ADNs), which have emerged as a valuable tool to capture the complexity of dynamical processes on networks, coevolving at a comparable time scale to the temporal network formation. Specifically, we complement a susceptible–infected–susceptible epidemic model with features that are typical of nonpharmaceutical interventions in public health policies: i) actions to promote awareness, which induce people to adopt self-protective behaviors, and ii) confinement policies to reduce the social activity of infected individuals. In the thermodynamic limit of large-scale populations, we use a mean-field approach to analytically derive the epidemic threshold, which offers viable insight to devise containment actions at the early stages of the outbreak. Through the proposed model, it is possible to devise an optimal epidemic control policy as the combination of the two strategies, arising from the solution of an optimization problem. Finally, the analytical computation of the epidemic prevalence in endemic diseases on homogeneous ADNs is used to optimally calibrate control actions toward mitigating an endemic disease. Simulations are provided to support our theoretical results. 
    more » « less
  2. We propose an SIR epidemic model coupled with opinion dynamics to study an epidemic and opinions spreading in a network of communities. Our model couples networked SIR epidemic dynamics and opinions towards the severity of the epidemic. We develop an epidemic-opinion based threshold condition to capture the moment when a weighted average of the epidemic states starts to decrease exponentially fast over the network, namely the peak infection time. We define an effective reproduction number to characterize the behavior of the model through the peak infection time. We use both analytical and simulation-based results to illustrate that the opinions reflect the recovered levels within the communities after the epidemic dies out. 
    more » « less
  3. Accurate prediction of the transmission of epidemic diseases such as COVID-19 is crucial for implementing effective mitigation measures. In this work, we develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously. We construct a 3-way spatio-temporal tensor (location, attribute, time) of case counts and propose a nonnegative tensor factorization with latent epidemiological model regularization named STELAR. Unlike standard tensor factorization methods which cannot predict slabs ahead, STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete time difference equations of a widely adopted epidemiological model. We use latent instead of location/attribute-level epidemiological dynamics to capture common epidemic profile sub-types and improve collaborative learning and prediction. We conduct experiments using both county- and state level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic. Finally, we evaluate the predictive ability of our method and show superior performance compared to the baselines, achieving up to 21% lower root mean square error and 25% lower mean absolute error for county-level prediction. 
    more » « less
  4. Abstract

    We expand the calculation of the upper bound on epidemic overshoot in SIR models to account for nonlinear incidence. We lay out the general procedure and restrictions to perform the calculation analytically for nonlinear functions in the number of susceptibles. We demonstrate the procedure by working through several examples and also numerically study what happens to the upper bound on overshoot when nonlinear incidence manifests in the form of epidemic dynamics over a contact network. We find that both steeper incidence terms and larger contact heterogeneity can increase the range of communicable diseases at which the overshoot remains a relatively large public health hazard.

     
    more » « less
  5. null (Ed.)
    The worldwide healthcare and economic crisis caused by the COVID-19 pandemic highlights the need for a deeper understanding of investing in the mitigation of epidemic risks. To address this, we built a mathematical model to optimize investments into two types of measures for mitigating the risks of epidemic propagation: prevention/containment measures and treatment/recovery measures. The new model explicitly accounts for the characteristics of networks of individuals, as a critical element of epidemic propagation. Subsequent analysis shows that, to combat an epidemic that can cause significant negative impact, optimal investment in either category increases with a higher level of connectivity and intrinsic loss, but it is limited to a fraction of that total potential loss. However, when a fixed and limited mitigation investment is to be apportioned among the two types of measures, the optimal proportion of investment for prevention and containment increases when the investment limit goes up, and when the network connectivity decreases. Our results are consistent with existing studies and can be used to properly interpret what happened in past pandemics as well as to shed light on future and ongoing events such as COVID-19. 
    more » « less