We measure the complete set of angular coefficients for exclusive decays ( , ). Our analysis uses the full Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the transition and the Cabibbo-Kobayashi-Maskawa matrix element . Using recent lattice QCD calculations for the hadronic form factors, we find using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024
more »
« less
Gluon moment and parton distribution function of the pion from Nf=2+1+1 lattice QCD
We present the first calculation of the pion gluon moment from lattice QCD in the continuum-physical limit. The calculation is done using clover fermions for the valence action with three pion masses, 220, 310 and 690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm, using ensembles generated by MILC Collaboration with flavors of highly improved staggered quarks (HISQ). On the lattice, we nonperturbatively renormalize the gluon operator in RI/MOM scheme using the cluster-decomposition error reduction (CDER) technique to enhance the signal-to-noise ratio of the renormalization constant. We extrapolate the pion gluon moment to the continuum-physical limit and obtain in the scheme at 2 GeV, with first error being the statistical error and uncertainties in nonperturbative renormalization, and the second being a systematic uncertainty estimating the effect of ignoring quark mixing. Our pion gluon momentum fraction has a central value lower than two recent single-ensemble lattice-QCD results near physical pion mass but is consistent with the recent global fits by JAM and xFitter and with most QCD-model estimates. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2209424
- PAR ID:
- 10514056
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 109
- Issue:
- 11
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a lattice quantum chromodynamics (QCD) calculation of the -dependent pion and kaon distribution amplitudes (DA) in the framework of large momentum effective theory. This calculation is performed on a fine lattice of at physical pion mass, with the pion boosted to 1.8 GeV and kaon boosted to 2.3 GeV. We renormalize the matrix elements in the hybrid scheme and match to with a subtraction of the leading renormalon in the Wilson-line mass. The perturbative matching is improved by resumming the large logarithms related to the small quark and gluon momenta in the soft-gluon limit. After resummation, we demonstrate that we are able to calculate a range of with for pion and for kaon with theoretical systematic errors under control. The kaon DA is shown to be slighted skewed, and narrower than pion DA. Although the -dependence cannot be direct calculated beyond these ranges, we estimate higher moments of the pion and kaon DAs by complementing our calculation with short-distance factorization. Published by the American Physical Society2024more » « less
-
The ratio of branching fractions , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of at the SuperKEKB asymmetric-energy collider. Data is collected at the resonance, and one meson in the decay is fully reconstructed in hadronic decay modes. The accompanying signal meson is reconstructed as using leptonic decays. The normalization decay, , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024more » « less
-
Top-quark pair production is observed in lead–lead ( ) collisions at at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERNmore » « less
-
We present a measurement of the branching fraction and time-dependent charge-parity ( ) decay-rate asymmetries in decays. The data sample was collected with the Belle II detector at the SuperKEKB asymmetric collider in 2019–2022 and contains meson pairs from decays. We reconstruct signal decays and fit the parameters from the distribution of the proper-decay-time difference of the two mesons. We measure the branching fraction to be and the direct and mixing-induced asymmetries to be and , respectively, where the first uncertainties are statistical and the second are systematic. We observe mixing-induced violation with a significance of 5.0 standard deviations for the first time in this mode. Published by the American Physical Society2025more » « less