skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal Supervised Contrastive Learning for Modeling Patient Risk Progression
We consider the problem of predicting how the likelihood of an outcome of interest for a patient changes over time as we observe more of the patient’s data. To solve this problem, we propose a supervised contrastive learning framework that learns an embedding representation for each time step of a patient time series. Our framework learns the embedding space to have the following properties: (1) nearby points in the embedding space have similar predicted class probabilities, (2) adjacent time steps of the same time series map to nearby points in the embedding space, and (3) time steps with very different raw feature vectors map to far apart regions of the embedding space. To achieve property (3), we employ a nearest neighbor pairing mechanism in the raw feature space. This mechanism also serves as an alternative to "data augmentation", a key ingredient of contrastive learning, which lacks a standard procedure that is adequately realistic for clinical tabular data, to our knowledge. We demonstrate that our approach outperforms state-of-the-art baselines in predicting mortality of septic patients (MIMIC-III dataset) and tracking progression of cognitive impairment (ADNI dataset). Our method also consistently recovers the correct synthetic dataset embedding structure across experiments, a feat not achieved by baselines. Our ablation experiments show the pivotal role of our nearest neighbor pairing.  more » « less
Award ID(s):
2047981
PAR ID:
10514109
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Journal Name:
Proceedings of the 3rd Machine Learning for Health Symposium
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ranzato, M.; Beygelzimer, A.; Dauphin, Y; Liang, P. S.; Wortman Vaughan, J. (Ed.)
    Adversarial examples are a widely studied phenomenon in machine learning models. While most of the attention has been focused on neural networks, other practical models also suffer from this issue. In this work, we propose an algorithm for evaluating the adversarial robustness of k-nearest neighbor classification, i.e., finding a minimum-norm adversarial example. Diverging from previous proposals, we propose the first geometric approach by performing a search that expands outwards from a given input point. On a high level, the search radius expands to the nearby higher-order Voronoi cells until we find a cell that classifies differently from the input point. To scale the algorithm to a large k, we introduce approximation steps that find perturbation with smaller norm, compared to the baselines, in a variety of datasets. Furthermore, we analyze the structural properties of a dataset where our approach outperforms the competition. 
    more » « less
  2. Many metric learning tasks, such as triplet learning, nearest neighbor retrieval, and visualization, are treated primarily as embedding tasks where the ultimate metric is some variant of the Euclidean distance (e.g., cosine or Mahalanobis), and the algorithm must learn to embed points into the pre-chosen space. The study of non-Euclidean geometries is often not explored, which we believe is due to a lack of tools for learning non-Euclidean measures of distance. Recent work has shown that Bregman divergences can be learned from data, opening a promising approach to learning asymmetric distances. We propose a new approach to learning arbitrary Bergman divergences in a differentiable manner via input convex neural networks and show that it overcomes significant limitations of previous works. We also demonstrate that our method more faithfully learns divergences over a set of both new and previously studied tasks, including asymmetric regression, ranking, and clustering. Our tests further extend to known asymmetric, but non-Bregman tasks, where our method still performs competitively despite misspecification, showing the general utility of our approach for asymmetric learning. 
    more » « less
  3. The greedy and nearest-neighbor TSP heuristics can both have $$\log n$$ approximation factors from optimal in worst case, even just for $$n$$ points in Euclidean space. In this note, we show that this approximation factor is only realized when the optimal tour is unusually short. In particular, for points from any fixed $$d$$-Ahlfor's regular metric space (which includes any $$d$$-manifold like the $$d$$-cube $[0,1]^d$ in the case $$d$$ is an integer but also fractals of dimension $$d$$ when $$d$$ is real-valued), our results imply that the greedy and nearest-neighbor heuristics have additive errors from optimal on the order of the optimal tour length through random points in the same space, for $d>1$. 
    more » « less
  4. Liang, Xuefeng (Ed.)
    Deep learning has achieved state-of-the-art video action recognition (VAR) performance by comprehending action-related features from raw video. However, these models often learn to jointly encode auxiliary view (viewpoints and sensor properties) information with primary action features, leading to performance degradation under novel views and security concerns by revealing sensor types and locations. Here, we systematically study these shortcomings of VAR models and develop a novel approach, VIVAR, to learn view-invariant spatiotemporal action features removing view information. In particular, we leverage contrastive learning to separate actions and jointly optimize adversarial loss that aligns view distributions to remove auxiliary view information in the deep embedding space using the unlabeled synchronous multiview (MV) video to learn view-invariant VAR system. We evaluate VIVAR using our in-house large-scale time synchronous MV video dataset containing 10 actions with three angular viewpoints and sensors in diverse environments. VIVAR successfully captures view-invariant action features, improves inter and intra-action clusters’ quality, and outperforms SoTA models consistently with 8% more accuracy. We additionally perform extensive studies with our datasets, model architectures, multiple contrastive learning, and view distribution alignments to provide VIVAR insights. We open-source our code and dataset to facilitate further research in view-invariant systems. 
    more » « less
  5. Clustering is a fundamental task in machine learning. One of the most successful and broadly used algorithms is DBSCAN, a density-based clustering algorithm. DBSCAN requires ϵ-nearest neighbor graphs of the input dataset, which are computed with range-search algorithms and spatial data structures like KD-trees. Despite many efforts to design scalable implementations for DBSCAN, existing work is limited to low-dimensional datasets, as constructing ϵ-nearest neighbor graphs can be expensive in high-dimensions. This article introduces a modified DBSCAN, usingk-nearest neighbor (kNN) graphs to improve efficiency. We outline conditions forkNN-DBSCAN to match DBSCAN’s results and present a parallel implementation using OpenMP and MPI for shared and distributed memory systems. Testing on datasets up to 32 dimensions, we achieve remarkable scalability. Our implementation clusters one billion 3D points in under one second on 28K cores at TACC’s Frontera system. In a larger run, we cluster 65 billion points in 20 dimensions in under 40 seconds using 114,688 cores. Our method is up to 37× faster than state-of-the-art parallel DBSCAN on a 20-dimensional dataset with 4 million points. Code is available athttps://github.com/ut-padas/knndbscan. 
    more » « less