skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: The Role of Surface Potential Vorticity in the Vertical Structure of Mesoscale Eddies in Wind-Driven Ocean Circulations

The vertical structure of ocean eddies is generally surface-intensified, commonly attributed to the dominant baroclinic modes arising from the boundary conditions (BCs). Conventional BC considerations mostly focus on either flat- or rough-bottom conditions. The impact of surface buoyancy anomalies—often represented by surface potential vorticity (PV) anomalies—has not been fully explored. Here, we study the role of the surface PV in setting the vertical distribution of eddy kinetic energy (EKE) in an idealized adiabatic ocean model driven by wind stress. The simulated EKE profile in the extratropical ocean tends to peak at the surface and have ane-folding depth typically smaller than half of the ocean depth. This vertical structure can be reasonably represented by a single surface quasigeostrophic (SQG) mode at the energy-containing scale resulting from the large-scale PV structure. Due to isopycnal outcropping and interior PV homogenization, the surface meridional PV gradient is substantially stronger than the interior PV gradient, yielding surface-trapped baroclinically unstable modes with horizontal scales comparable to or smaller than the deformation radius. These surface-trapped eddies then grow in size both horizontally and vertically through an inverse energy cascade up to the energy-containing scale, which dominates the vertical distribution of EKE. As for smaller horizontal scales, the EKE distribution decays faster with depth. Guided by this interpretation, an SQG-based scale-aware parameterization of the EKE profile is proposed. Preliminary offline diagnosis of a high-resolution simulation shows the proposed scheme successfully reproducing the dependence of the vertical structure of EKE on the horizontal grid resolution.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Medium: X Size: p. 1243-1266
p. 1243-1266
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Beaufort Gyre (BG) is hypothesized to be partially equilibrated by those mesoscale eddies that form via baroclinic instabilities of its currents. However, our understanding of the eddy field’s dependence on the mean BG currents and the role of sea ice remains incomplete. This theoretical study explores the scales and vertical structures of eddies forming specifically due to baroclinic instabilities of interior BG flows. An idealized quasi-geostrophic model is used to show that flows driven only by the Ekman pumping contain no interior potential vorticity (PV) gradients and generate weak and large eddies, ℴ(200km) in size, with predominantly barotropic and first baroclinic mode energy. However, flows containing realistic interior PV gradients in the Pacific halocline layer generate significantly smaller eddies of about 50 km in size, with a distinct second baroclinic mode structure and a subsurface kinetic energy maximum. The dramatic change in eddy characteristics is shown to be caused by the stirring of interior PV gradients by large-scale barotropic eddies. The sea ice-ocean drag is identified as the dominant eddy dissipation mechanism, leading to realistic sub-surface maxima of eddy kinetic energy for drag coefficients higher than about 2×10 −3 . A scaling law is developed for the eddy potential enstrophy, demonstrating that it is directly proportional to the interior PV gradient and the square root of the barotropic eddy kinetic energy. This study proposes a possible formation mechanism of large BG eddies and points to the importance of accurate representation of the interior PV gradients and eddy dissipation by ice-ocean drag in BG simulations and theory. 
    more » « less
  2. null (Ed.)
    Abstract Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies. 
    more » « less
  3. Abstract

    The Southern Ocean's eddy response to changing climate remains unclear, with observations suggesting non‐monotonic changes in eddy kinetic energy (EKE) across scales. Here simulations reappear that smaller‐mesoscale EKE is suppressed while larger‐mesoscale EKE increases with strengthened winds. This change was linked to scale‐wise changes in the kinetic energy cycle, where a sensitive balance between the dominant mesoscale energy sinks—inverse KE cascade, and source—baroclinic energization. Such balance induced a strong (weak) mesoscale suppression in the flat (ridge) channel. Mechanistically, this mesoscale suppression is attributed to stronger zonal jets weakening smaller mesoscale eddies and promoting larger‐scale waves. These EKE multiscale changes lead to multiscale changes in meridional and vertical eddy transport, which can be parameterized using a scale‐dependent diffusivity linked to the EKE spectrum. This multiscale eddy response may have significant implications for understanding and modeling the Southern Ocean eddy activity and transport under a changing climate.

    more » « less
  4. Abstract

    The mixing of tracers by mesoscale eddies, parameterized in many ocean general circulation models (OGCMs) as a diffusive‐advective process, contributes significantly to the distribution of tracers in the ocean. In the ocean interior, diffusive contribution occurs mostly along the direction parallel to local neutral density surfaces. However, near the surface of the ocean, small‐scale turbulence and the presence of the boundary itself break this constraint and the mesoscale transport occurs mostly along a plane parallel to the ocean surface (horizontal). Although this process is easily represented in OGCMs with geopotential vertical coordinates, the representation is more challenging in OGCMs that use a general vertical coordinate, where surfaces can be tilted with respect to the horizontal. We propose a method for representing the diffusive horizontal mesoscale fluxes within the surface boundary layer of general vertical coordinate OGCMs. The method relies on regridding/remapping techniques to represent tracers in a geopotential grid. Horizontal fluxes are calculated on this grid and then remapped back to the native grid, where fluxes are applied. The algorithm is implemented in an ocean model and tested in idealized and realistic settings. Horizontal diffusion can account for up to 10% of the total northward heat transport in the Southern Ocean and Western boundary current regions of the Northern Hemisphere. It also reduces the vertical stratification of the upper ocean, which results in an overall deepening of the surface boundary layer depth. Finally, enabling horizontal diffusion leads to meaningful reductions in the near‐surface global bias of potential temperature and salinity.

    more » « less
  5. Eddies in the northwestern tropical Atlantic Ocean play a crucial role in transporting the South Atlantic Upper Ocean Water to the North Atlantic and connect the Atlantic and the Caribbean Sea. Although surface characteristics of those eddies have been well studied, their vertical structures and governing mechanisms are much less known. Here, using a time-dependent energetics framework based on the multiscale window transform, we examine the seasonal variability of the eddy kinetic energy (EKE) in the northwestern tropical Atlantic. Both altimeter-based data and ocean reanalyses show a substantial EKE seasonal cycle in the North Brazil Current Retroflection (NBCR) region that is mostly trapped in the upper 200 m. In the most energetic NBCR region, the EKE reaches its minimum in April–June and maximum in July–September. By analyzing six ocean reanalysis products, we find that barotropic instability is the controlling mechanism for the seasonal eddy variability in the NBCR region. Nonlocal processes, including advection and pressure work, play opposite roles in the EKE seasonal cycle. In the eastern part of the NBCR region, the EKE seasonal evolution is similar to the NBCR region. However, it is the nonlocal processes that control the EKE seasonality. In the western part of the NBCR region, the EKE magnitude is one order of magnitude smaller than in the NBCR region and shows a different seasonal cycle, which peaks in March and reaches its minimum in October–November. Our results highlight the complex mechanisms governing eddy variability in the northwestern tropical Atlantic and provide insights into their potential changes with changing background conditions. 
    more » « less