Abstract Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa.
more »
« less
Gold and sulfide-bearing listvenite in the mantle section of the Tays ophiolite in the Arabian Shield, Saudi Arabia
The mantle section of the Late Neoproterozoic Tays ophiolite in the Arabian Shield consists principally of thoroughly serpentinized peridotite with characteristics typical of depleted mantle protoliths from a fore-arc environment. The serpentinite is altered along shear zones and thrust planes to gold-bearing listvenite bodies of various sizes. These bodies are divided into carbonate listvenite and silica‐carbonate listvenite; they may be dyke-like or lenticular in form, and are yellowish-brown, reddish-brown, or greyish in outcrop. Carbonate list- venite expresses schistose deformation fabrics concordant to fabric in the host serpentinite, whereas silica‐car- bonate listvenite is undeformed at field scale and contains a generation of undeformed minerals at thin-section scale. Silica‐carbonate listvenite contains Cr-rich muscovite (fuchsite) and base-metal sulfides and is enriched in Zn, Pb, Cu, Ag, and Au along with SiO2. The transformation of serpentinite along shear zones to different types of listvenite reflects successive episodes of fluid-mediated metasomatism. Carbonate listvenite develops first, driven by infiltration of CO2–bearing fluids during serpentinization of the original fore-arc peridotite. Silica‐carbonate listvenite marks a later episode associated with infiltration of K-bearing, SiO2-saturated fluids released during emplacement of the ophiolite. Listvenitization in the Tays serpentinite concentrated gold in sub-economic to economic extents, with concentrations increasing from host serpentinite (2–4 ng/g) to carbonate listvenite (267–937 ng/g) to silica‐carbonate listvenite (1717–3324 ng/g).
more »
« less
- Award ID(s):
- 1947616
- PAR ID:
- 10514220
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Geochemistry
- Volume:
- 84
- Issue:
- 2
- ISSN:
- 0009-2819
- Page Range / eLocation ID:
- 126081
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid-rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non-collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non-collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in-situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic-Early Cretaceous, and potentially Late Cretaceous-Paleocene high-pressure (HP)–low-temperature metamorphic sequences. Whole-rock trace element data and in-situ B isotopes favor serpentinization by a crust-derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid-Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back-arc basins. Subsequent compressional phases trigger short-lived subduction in the back-arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non-collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back-arc basins.more » « less
-
Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid-rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non-collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non-collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in-situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic-Early Cretaceous, and potentially Late Cretaceous-Paleocene high-pressure (HP)–low-temperature metamorphic sequences. Whole-rock trace element data and in-situ B isotopes favor serpentinization by a crust-derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid-Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back-arc basins. Subsequent compressional phases trigger short-lived subduction in the back-arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non-collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back-arc basins.more » « less
-
Abstract. Numerous studies have revealed genetic similarities between Tethyanophiolites and oceanic “proto-arc” sequences formed above nascent subductionzones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as ananalogue for this proto-arc crust. Though proto-arc magmatism and themechanisms of subduction initiation are of great interest, insight isdifficult to gain from drilling and limited surface outcrops in marinesettings. In contrast, the 3–5 km thick upper-crustal succession of theSemail ophiolite, which is exposed in an oblique cross section, presents anopportunity to assess the architecture and volumes of different volcanicrocks that form during the proto-arc stage. To determine the distribution ofthe volcanic rocks and to aid exploration for the volcanogenic massivesulfide (VMS) deposits that they host, we have remapped the volcanic unitsof the Semail ophiolite by integrating new field observations, geochemicalanalyses, and geophysical interpretations with pre-existing geological maps.By linking the major-element compositions of the volcanic units to rockmagnetic properties, we were able to use aeromagnetic data to infer theextension of each outcropping unit below sedimentary cover, resulting ina new map showing 2100 km2 of upper-crustal bedrock. Whereas earlier maps distinguished two main volcanostratigraphic units, wehave distinguished four, recording the progression from early spreading-axisbasalts (Geotimes), through axial to off-axial depleted basalts (Lasail), topost-axial tholeiites (Tholeiitic Alley), and finally boninites (BoniniticAlley). Geotimes (“Phase 1”) axial dykes and lavas make up ∼55 vol % of the Semail upper crust, whereas post-axial (“Phase 2”) lavasconstitute the remaining ∼45 vol % and ubiquitously coverthe underlying axial crust. Highly depleted boninitic members of the Lasailunit locally occur within and directly atop the axial sequence, marking anearlier onset of boninitic magmatism than previously known for theophiolite. The vast majority of the Semail boninites, however, belong to theBoninitic Alley unit and occur as discontinuous accumulations up to 2 kmthick at the top of the ophiolite sequence and constitute ∼15 vol % of the upper crust. The new map provides a basis for targetedexploration of the gold-bearing VMS deposits hosted by these boninites. Thethickest boninite accumulations occur in the Fizh block, where magma ascentoccurred along crustal-scale faults that are connected to shear zones in theunderlying mantle rocks, which in turn are associated with economicchromitite deposits. Locating major boninite feeder zones may thus be anindirect means to explore for chromitites in the underlying mantle.more » « less
-
Abstract Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid‐rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non‐collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non‐collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in‐situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic‐Early Cretaceous, and potentially Late Cretaceous‐Paleocene high‐pressure (HP)–low‐temperature metamorphic sequences. Whole‐rock trace element data and in‐situ B isotopes favor serpentinization by a crust‐derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid‐Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back‐arc basins. Subsequent compressional phases trigger short‐lived subduction in the back‐arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non‐collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back‐arc basins.more » « less
An official website of the United States government

