skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1947616

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The emergence of the “mush paradigm” has raised several questions for conventional models of magma storage and extraction: how are melts extracted to form eruptible liquid-rich domains? What mechanism controls melt transport in mush-rich systems? Recently, reactive flow has been proposed as a major contributing factor in the formation of high porosity, melt-rich regions. Yet, owing to the absence of accurate geochemical simulations, the influence of reactive flow on the porosity of natural mush systems remains under-constrained. Here, we use a thermodynamically constrained model of melt-mush reaction to simulate the chemical, mineralogical, and physical consequences of reactive flow in a multi-component mush system. Our results demonstrate that reactive flow within troctolitic to gabbroic mushes can drive large changes in mush porosity. For example, primitive magma recharge causes an increase in the system porosity and could trigger melt channelization or mush destabilization, aiding rapid melt transfer through low-porosity mush reservoirs. 
    more » « less
  2. Abstract Magmas with matrix glass compositions ranging from basalt to dacite erupted from a series of 24 fissures in the first 2 weeks of the 2018 Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano. Eruption styles ranged from low spattering and fountaining to strombolian activity. Major element trajectories in matrix glasses and melt inclusions hosted by olivine, pyroxene and plagioclase are consistent with variable amounts of fractional crystallization, with incompatible elements (e.g., Cl, F, and H2O) becoming enriched by 4–5 times as melt MgO contents evolve from 6 to 0.5 wt%. The high viscosity and high H2O contents (∼2 wt%) of the dacitic melts erupting at Fissure 17 account for the explosive Strombolian behavior exhibited by this fissure, in contrast to the low fountaining and spattering observed at fissures erupting basaltic to basaltic‐andesite melts. Saturation pressures calculated from melt inclusion CO2‐H2O contents indicate that the magma reservoir(s) supplying these fissures was located at ∼2–3 km depth, which is in agreement with the depth of a dacitic magma body intercepted during drilling in 2005 (∼2.5 km) and a seismically imaged lowVp/Vsanomaly (∼2 km depth). Nb/Y ratios in erupted products are similar to lavas erupted between 1955 and 1960, indicating that melts were stored and underwent variable amounts of crystallization in the LERZ for >60 years before being remobilized by a dike intrusion in 2018. We demonstrate that extensive fractional crystallization generates viscous and volatile‐rich magma with potential for hazardous explosive eruptions, which may be lurking undetected at many ocean island volcanoes. 
    more » « less
  3. The mantle section of the Late Neoproterozoic Tays ophiolite in the Arabian Shield consists principally of thoroughly serpentinized peridotite with characteristics typical of depleted mantle protoliths from a fore-arc environment. The serpentinite is altered along shear zones and thrust planes to gold-bearing listvenite bodies of various sizes. These bodies are divided into carbonate listvenite and silica‐carbonate listvenite; they may be dyke-like or lenticular in form, and are yellowish-brown, reddish-brown, or greyish in outcrop. Carbonate list- venite expresses schistose deformation fabrics concordant to fabric in the host serpentinite, whereas silica‐car- bonate listvenite is undeformed at field scale and contains a generation of undeformed minerals at thin-section scale. Silica‐carbonate listvenite contains Cr-rich muscovite (fuchsite) and base-metal sulfides and is enriched in Zn, Pb, Cu, Ag, and Au along with SiO2. The transformation of serpentinite along shear zones to different types of listvenite reflects successive episodes of fluid-mediated metasomatism. Carbonate listvenite develops first, driven by infiltration of CO2–bearing fluids during serpentinization of the original fore-arc peridotite. Silica‐carbonate listvenite marks a later episode associated with infiltration of K-bearing, SiO2-saturated fluids released during emplacement of the ophiolite. Listvenitization in the Tays serpentinite concentrated gold in sub-economic to economic extents, with concentrations increasing from host serpentinite (2–4 ng/g) to carbonate listvenite (267–937 ng/g) to silica‐carbonate listvenite (1717–3324 ng/g). 
    more » « less
  4. Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain a variety of melt (now glassy) inclusions hosted within mantle phases. The compositions and textures of these melt inclusions have the po- tential to constrain their trapping processes, melt sources, and the rates of ascent of their parent xenoliths. Here we focus on unusual spinel-hosted melt inclusions from one composite xenolith, reporting glass and daughter mineral compositions and textures and attempting to reconstruct inclusion bulk compositions. The xenolith contains spinel-hosted melt inclusions in its harzburgite, olivine-websterite and lherzolite layers; there are none in its orthopyroxenite layer. The glass compositions and reconstructed bulk compositions of the partly-crystallized inclusions correspond to alkaline intermediate melts, mostly trachyandesites. Such melts are most likely to be generated and trapped by vapor-undersaturated phlogopite or amphibole dehydration melting to an assemblage of liquid + spinel + olivine ± pyroxenes. We modeled the near-liquidus phase relations of the inclusion bulk compositions and noted the closest approach of each inclusion to simultaneous saturation with spinel and either phlogopite or amphibole, resulting in estimated trapping pressures of ~0.5–1.5 GPa and temperatures of ~1000–1100 ◦C. The large size of the hosting spinel grains suggests a slow process associated with these breakdown reactions, probably thinning of the lithosphere and steepening of the geotherm during regional extension. A linear correlation between the vesicle area and inclusion area (as proxies for volume) suggests an in-situ exsolution process from melts of relatively uniform volatile initial contents, consistent with trapping of vapor- undersaturated melts that later exsolve vapor during cooling and daughter crystal growth. A negative correla- tion between the glass content in melt inclusions and the size of the inclusion itself suggests a control on the degree of crystallinity with the size. There appears to be a two-stage cooling history captured by the inclusions, forming first prismatic daughter crystals and large round vesicles at the wall of the inclusion, followed by quenching to form a mat of fine crystallites and small vesicles in most inclusions. We connect the final quench to rapid ascent of the xenolith in its host melt, which also triggered partial breakdown of remaining amphibole to fine glassy symplectites. 
    more » « less
  5. The Wadi Al-Baroud area, in Egypt’s Eastern Desert, exposes Neoproterozoic rocks of the Arabian-Nubian Shield (ANS), including both syntectonic granitoids (granodiorite and tonalite) and post-collisional granites. We present field work, petrographic study, mineral compositions, and whole-rock geochemistry results from these granitoids and discuss their petrogenesis, magmatic sources, evolution, and tectonic significance. The syntectonic granitoids show subduction affinity and an anomalous steep trend of K-enrichment that suggests assimilation of a granitic component during their evolution. The post-collisional granites form two plutons, on opposite sides of Wadi Al- Baroud, named here the Ras Baroud pluton (RBP) and the Abu Hawis pluton (AHP). They intruded the syn- tectonic granitoids with sharp intrusive contacts. The post-collisional plutons are devoid of mafic enclaves and are cut by very few dikes. They dominantly consist of biotite monzogranite that grades into muscovite mon- zogranite. The latter lithology hosts Nb-Ta oxide minerals (columbite, tantalite, and wodginite) displaying a variety of textural and compositional features. The cores are primary columbite-(Mn), whereas rims are over- grown or partly replaced by tantalite-(Fe) and wodginite due to late interactions with highly fractionated re- sidual melt. The highly-evolved AHP and RBP granites are typical of the post-collisional granitoids of the ANS, including high concentrations of rare earth elements (REE), Ta, Hf, Nb, Zr, Y, and Rb; elevated ratios of Ga/Al; and low contents of Sr, CaO, and MgO. Their geochemistry suggests that the parental magma of both plutons formed from an I-type tonalitic source rock that underwent partial melting during the thermal disturbance that followed a lithospheric delamination event during the post-collisional stage of the East African Orogeny. The variations in major oxide and trace element contents among individual samples of the AHP and the RBP cannot be explained as a liquid line of descent due to fractional crystallization; rather we interpret them as sampling variable proportions of an evolved liquid and the solid crystals in equilibrium with that liquid. 
    more » « less
  6. Experiments on shock amorphization of plagioclase in Mars-like basalt reconcile the pressure scale for martian meteorites. 
    more » « less
  7. Loveringite, a rare member of the crichtonite group with nominal formula (Ca,Ce)(Ti,Fe,Cr,Mg)21O38, was found in the Khamal layered mafic intrusion, the first known locality for this mineral in the Arabian Shield. The Khamal intrusion, a large post-collisional mafic complex, is lithologically zoned, bottom to top, from olivine gabbro through gabbronorite, hornblende gabbro, anorthosite, and diorite to quartz diorite. Loveringite is found near the base of the complex, as an intercumulus phase in olivine gabbro. Most loveringite grains are homogeneous, although a few grains are zoned from cores rich in TiO2, Al2O3, Cr2O3, and CaO towards rims rich in FeO*, ZrO2, V2O3, Y2O3, and rare earth elements (REE). Petrographic relations indicate that loveringite formed after crystallization of cumulus olivine, pyroxenes, and plagioclase. Anhedral and corroded crystals of loveringite are surrounded by reaction rims of Mn-bearing ilmenite and baddeleyite, suggesting that the residual liquid evolved into and subsequently out of the stability field of loveringite. The budget of incompatible elements (Zr, Hf, REE, U, and Th) hosted in loveringite is anomalous for a primitive mafic liquid. Saturation in loveringite is likely the result of early contamination of the primary melt by anatexis of country rock, followed by isolation of evolving liquid in intercumulus space that restricted communication with the overlying magma chamber. The zoned crystals likely reflect diffusive equilibration between residual loveringite grains and their reaction rims of ilmenite. 
    more » « less