skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of atomistic modeling in bioinspired materials design: A review
Biological materials have consistently intrigued researchers due to their remarkable properties and intricate structure–property-function relationships. Deciphering the pathways through which nature has bestowed its exceptional properties represents a complex challenge. The hierarchical architectures of biomaterials are recognized as the basis for mechanical robustness. Moreover, it is well-established that the intriguing properties of biomaterials arise primarily from the architecture at the nanoscale, particularly the abundant carefully designed interfaces. Driven by the diverse functionality and the increasing comprehension of the underlying design mechanisms in biomaterials, substantial endeavors have been directed toward emulating the architectures and interactions in synthetic materials. By reviewing atomistic modeling of nacre, wood, and coconut endocarp, in this work, we aim at highlighting the significant role of atomistic modeling in revealing nanoscale strengthening and toughening mechanisms of biomaterials, subsequently advancing the development of bioinspired material.  more » « less
Award ID(s):
2316676 2302981
PAR ID:
10514368
Author(s) / Creator(s):
Editor(s):
Sinnott, Susan
Publisher / Repository:
ELSEVIER
Date Published:
Journal Name:
Computational Materials Science
Volume:
232
Issue:
C
ISSN:
0927-0256
Page Range / eLocation ID:
112667
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biopolymers and bioinspired materials contribute to the construction of intricate hierarchical structures that exhibit advanced properties. The remarkable toughness and damage tolerance of such multilevel materials are conferred through the hierarchical assembly of their multiscale (i.e., atomistic to macroscale) components and architectures. Here, the functionality and mechanisms of biopolymers and bio‐inspired materials at multilength scales are explored and summarized, focusing on biopolymer nanofibril configurations, biocompatible synthetic biopolymers, and bio‐inspired composites. Their modeling methods with theoretical basis at multiple lengths and time scales are reviewed for biopolymer applications. Additionally, the exploration of artificial intelligence‐powered methodologies is emphasized to realize improvements in these biopolymers from functionality, biodegradability, and sustainability to their characterization, fabrication process, and superior designs. Ultimately, a promising future for these versatile materials in the manufacturing of advanced materials across wider applications and greater lifecycle impacts is foreseen. 
    more » « less
  2. Abstract Advanced templating techniques have enabled delicate control of both nano‐ and microscale structures and have helped thrust functional materials into the forefront of society. Cellulose nanomaterials are derived from natural polymers and show promise as a templating source for advanced materials. Use of cellulose nanomaterials in templating combines nanoscale property control with sustainability, an attribute often lacking in other templating techniques. Use of cellulose nanofibers for templating has shown great promise in recent years, but previous reviews on cellulose nanomaterial templating techniques have not provided extensive analysis of cellulose nanofiber templating. Cellulose nanofibers display several unique properties, including mechanical strength, porosity, high water retention, high surface functionality, and an entangled fibrous network, all of which can dictate distinctive aspects in the final templated materials. Many applications exploit the unique aspects of templating with cellulose nanofibers that help control the final properties of the material, including, but not limited to, applications in catalysis, batteries, supercapacitors, electrodes, building materials, biomaterials, and membranes. A detailed analysis on the use of cellulose nanofibers templating is provided, addressing specifically how careful selection of templating mechanisms and methodologies, combined toward goal applications, can be used to directly benefit chosen applications in advanced functional materials. 
    more » « less
  3. The field of organic electronics continues to be driven by new charge-transporting materials that are typically processed from toxic organic solvents incompatible with biological environments. Over the past few decades, powerful examples of electrical transport as mediated through protein-based macromolecules have fueled the emerging area of organic bioelectronics. These attractive bioinspired architectures have enabled several important applications that draw on their functional electrical properties, ranging from field-effect transistors to piezoelectrics. In addition to naturally occurring protein biomacromolecules, unnatural oligopeptide self-assemblies and peptide–π conjugates also exhibit interesting electrical applications. This review provides an overview of electrical transport and electrical polarization in specialized biomaterials as manifested in solid-state device architectures. 
    more » « less
  4. Abstract The ability to print soft materials into predefined architectures with programmable nanostructures and mechanical properties is a necessary requirement for creating synthetic biomaterials that mimic living tissues. However, the low viscosity of common materials and lack of required mechanical properties in the final product present an obstacle to the use of traditional additive manufacturing approaches. Here, a new liquid‐in‐liquid 3D printing approach is used to successfully fabricate constructs with internal nanostructures using in situ self‐assembly during the extrusion of an aqueous solution containing surfactant and photocurable polymer into a stabilizing polar oil bath. Subsequent photopolymerization preserves the nanostructures created due to surfactant self‐assembly at the immiscible liquid–liquid interface, which is confirmed by small‐angle X‐ray scattering. Mechanical properties of the photopolymerized prints are shown to be tunable based on constituent components of the aqueous solution. The reported 3D printing approach expands the range of low‐viscosity materials that can be used in 3D printing, and enables robust constructs production with internal nanostructures and spatially defined features. The reported approach has broad applications in regenerative medicine by providing a platform to print self‐assembling biomaterials into complex tissue mimics where internal supramolecular structures and their functionality control biological processes, similar to natural extracellular matrices. 
    more » « less
  5. null (Ed.)
    In recent years, lanthanum aluminate/strontium titanate (LAO/STO) heterointerfaces have been used to create a growing family of nanoelectronic devices based on nanoscale control of LAO/STO metal-to-insulator transition. The properties of these devices are wide-ranging, but they are restricted by nature of the underlying thick STO substrate. Here, single-crystal freestanding membranes based on LAO/STO heterostructures were fabricated, which can be directly integrated with other materials via van der Waals stacking. The key properties of LAO/STO are preserved when LAO/STO membranes are formed. Conductive atomic force microscope lithography is shown to successfully create reversible patterns of nanoscale conducting regions, which survive to millikelvin temperatures. The ability to form reconfigurable conducting nanostructures on LAO/STO membranes opens opportunities to integrate a variety of nanoelectronics with silicon-based architectures and flexible, magnetic, or superconducting materials. 
    more » « less