skip to main content


Title: Setting the Right Expectations: Algorithmic Recourse Over Time
Algorithmic systems are often called upon to assist in high-stakes decision making. In light of this, algorithmic recourse, the principle wherein individuals should be able to take action against an undesirable outcome made by an algorithmic system, is receiving growing attention. The bulk of the literature on algorithmic recourse to-date focuses primarily on how to provide recourse to a single individual, overlooking a critical element: the effects of a continuously changing context. Disregarding these effects on recourse is a significant oversight, since, in almost all cases, recourse consists of an individual making a first, unfavorable attempt, and then being given an opportunity to make one or several attempts at a later date — when the context might have changed. This can create false expectations, as initial recourse recommendations may become less reliable over time due to model drift and competition for access to the favorable outcome between individuals. In this work we propose an agent-based simulation framework for studying the effects of a continuously changing environment on algorithmic recourse. In particular, we identify two main effects that can alter the reliability of recourse for individuals represented by the agents: (1) competition with other agents acting upon recourse, and (2) competition with new agents entering the environment. Our findings highlight that only a small set of specific parameterizations result in algorithmic recourse that is reliable for agents over time. Consequently, we argue that substantial additional work is needed to understand recourse reliability over time, and to develop recourse methods that reward agents’ effort.  more » « less
Award ID(s):
1916505 1922658
PAR ID:
10514467
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
EAAMO '23: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization
ISBN:
9798400703812
Page Range / eLocation ID:
1 to 11
Subject(s) / Keyword(s):
responsible AI AI ethics algorithmic recourse temporal data
Format(s):
Medium: X
Location:
Boston MA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Algorithmic recourse, or providing recommendations to individuals who receive an unfavorable outcome from an algorithmic system on how they can take action and change that outcome, is an important tool for giving individuals agency against algorithmic decision systems. Unfortunately, research on algorithmic recourse faces a fundamental challenge: there are no publicly available datasets on algorithmic recourse. In this work, we begin to explore a solution to this challenge by creating an agent-based simulation called The Game of Recourse (an homage to Conway's Game of Life) to synthesize realistic algorithmic recourse data. We designed The Game of Recourse with a focus on reliability and fairness, two areas of critical importance in socio-technical systems. 
    more » « less
  2. The increasing automation of high-stakes decisions with direct impact on the lives and well-being of individuals raises a number of important considerations. Prominent among these is strategic behavior by individuals hoping to achieve a more desirable outcome. Two forms of such behavior are commonly studied: 1) misreporting of individual attributes, and 2) recourse, or actions that truly change such attributes. The former involves deception, and is inherently undesirable, whereas the latter may well be a desirable goal insofar as it changes true individual qualification. We study misreporting and recourse as strategic choices by individuals within a unified framework. In particular, we propose auditing as a means to incentivize recourse actions over attribute manipulation, and characterize optimal audit policies for two types of principals, utility-maximizing and recourse-maximizing. Additionally, we consider subsidies as an incentive for recourse over manipulation, and show that even a utility-maximizing principal would be willing to devote a considerable amount of audit budget to providing such subsidies. Finally, we consider the problem of optimizing fines for failed audits, and bound the total cost incurred by the population as a result of audits. 
    more » « less
  3. The increasing automation of high-stakes decisions with direct impact on the lives and well-being of individuals raises a number of important considerations. Prominent among these is strategic behavior by individuals hoping to achieve a more desirable outcome. Two forms of such behavior are commonly studied: 1) misreporting of individual attributes, and 2) recourse, or actions that truly change such attributes. The former involves deception, and is inherently undesirable, whereas the latter may well be a desirable goal insofar as it changes true individual qualification. We study misreporting and recourse as strategic choices by individuals within a unified framework. In particular, we propose auditing as a means to incentivize recourse actions over attribute manipulation, and characterize optimal audit policies for two types of principals, utility-maximizing and recourse-maximizing. Additionally, we consider subsidies as an incentive for recourse over manipulation, and show that even a utility-maximizing principal would be willing to devote a considerable amount of audit budget to providing such subsidies. Finally, we consider the problem of optimizing fines for failed audits, and bound the total cost incurred by the population as a result of audits. 
    more » « less
  4. Artificial intelligence, machine learning, and algorithmic techniques in general, provide two crucial abilities with the potential to improve decision-making in the context of allocation of scarce societal resources. They have the ability to flexibly and accurately model treatment response at the individual level, potentially allowing us to better match available resources to individuals. In addition, they have the ability to reason simultaneously about the effects of matching sets of scarce resources to populations of individuals. In this work, we leverage these abilities to study algorithmic allocation of scarce societal resources in the context of homelessness. In communities throughout the United States, there is constant demand for an array of homeless services intended to address different levels of need. Allocations of housing services must match households to appropriate services that continuously fluctuate in availability, while inefficiencies in allocation could “waste” scarce resources as households will remain in-need and re-enter the homeless system, increasing the overall demand for homeless services. This complex allocation problem introduces novel technical and ethical challenges. Using administrative data from a regional homeless system, we formulate the problem of “optimal” allocation of resources given data on households with need for homeless services. The optimization problem aims to allocate available resources such that predicted probabilities of household re-entry are minimized. The key element of this work is its use of a counterfactual prediction approach that predicts household probabilities of re-entry into homeless services if assigned to each service. Through these counterfactual predictions, we find that this approach has the potential to improve the efficiency of the homeless system by reducing re-entry, and, therefore, system-wide demand. However, efficiency comes with trade-offs - a significant fraction of households are assigned to services that increase probability of re-entry. To address this issue as well as the inherent fairness considerations present in any context where there are insufficient resources to meet demand, we discuss the efficiency, equity, and fairness issues that arise in our work and consider potential implications for homeless policies. 
    more » « less
  5. Automated decision-making systems are increasingly deployed in domains such as hiring and credit approval where negative outcomes can have substantial ramifications for decision subjects. Thus, recent research has focused on providing explanations that help decision subjects understand the decision system and enable them to take actionable recourse to change their outcome. Popular counterfactual explanation techniques aim to achieve this by describing alterations to an instance that would transform a negative outcome to a positive one. Unfortunately, little user evaluation has been performed to assess which of the many counterfactual approaches best achieve this goal. In this work, we conduct a crowd-sourced between-subjects user study (N = 252) to examine the effects of counterfactual explanation type and presentation on lay decision subjects’ understandings of automated decision systems. We find that the region-based counterfactual type significantly increases objective understanding, subjective understanding, and response confidence as compared to the point-based type. We also find that counterfactual presentation significantly effects response time and moderates the effect of counterfactual type for response confidence, but not understanding. A qualitative analysis reveals how decision subjects interact with different explanation configurations and highlights unmet needs for explanation justification. Our results provide valuable insights and recommendations for the development of counterfactual explanation techniques towards achieving practical actionable recourse and empowering lay users to seek justice and opportunity in automated decision workflows. 
    more » « less