Abstract The withdrawal of glaciers in mountainous systems exposes over‐steepened slopes previously sculpted by ice. This debuttressing can directly trigger mass movements or leave slopes susceptible to them by other drivers, including seismogenic shaking and changing climate conditions. These systems may pose hazards long after deglaciation. Here, we investigate the drivers of slope failure for landslides at the northern entrance to Yellowstone National Park, a critical conduit traversed by ~1 million visitors each year. Through field mapping and analyses of LiDAR data, we quantify the spatial and temporal relationships between eight adjacent slides. Stratigraphic relationships and surface roughness analyses suggest initial emplacement 13–11.5 ka, after a significant delay from Deckard Flats glacial retreat (15.1 ± 1.2 ka). Thus, rapid glacial debuttressing was not the direct trigger of slope failure, though the resultant change in stress regime likely had a preparatory influence. We posit that the timing of failure was associated with (1) a period of enhanced moisture and seismicity in the late Pleistocene and (2) altered stress regimes associated with ice retreat. Historical archives and cross‐cutting relationships indicate portions of some ancient slides were reactivated; these areas are morphologically distinguishable from other slide surfaces, with mean topographic roughness 2 times that of non‐active slides. Stream power analysis and archival records indicate Holocene incision of the Gardner River and human disturbances are largely responsible for modern reactivations. Our findings highlight the importance of combining archival records with stratigraphic, field and remote sensing approaches to understanding landslide timing, risk, and drivers in post‐glacial environments. This study also provides a valuable baseline for geomorphic change in the Yellowstone system, where a 2022 flood incised streams, damaged infrastructure and further reactivated landslide slopes.
more »
« less
Assessment of factors leading to the failure of slopes in North Dakota
A total of 66,894 landslides were observed in North Dakota. The characteristics of these landslide locations were compared with the properties of areas without landslides to assess the factors that may be contributing to the landslides. Specifically, 68,395 control point locations randomly distributed across the state were selected for these comparisons. All the landslides for this study were found in areas with slopes less than 64°, with the majority of the failures occurring on slopes with inclinations between 9° and 14°. The largest fraction of the landslides occurred in the Sentinel Butte Formation (34,063 or 51% of the total), followed by Bullion Creek (8695 or 13% of the total) and river sediment of the Oahe Formation (6421 or 9.6% of the total). In the t tests, all of the surficial geologic formations had statistically significant differences between the landslides and control points. The t test for the slope inclination indicated statistically significant differences with a p-value less than 0.001 and a huge effect size between the landslide and control points. The sodium adsorption ratio and total dissolved solids were also found to be statistically significant from the t test results. Pearson’s correlation matrix showed a negative correlation between the amount of rainfall and various measures of the salt concentrations at the landslide locations, pointing to the reductions in shear strength and slope stability that might result as pore fluid salinity is leached.
more »
« less
- PAR ID:
- 10514504
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Landslides
- Volume:
- 21
- Issue:
- 5
- ISSN:
- 1612-510X
- Page Range / eLocation ID:
- 1109 to 1128
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tens of thousands of landslides were generated over 10,000 km2 of North Canterbury and Marlborough as a consequence of the 14 November 2016, Mw7.8 Kaikōura Earthquake. The most intense landslide damage was concentrated in 3500 km2 around the areas of fault rupture. Given the sparsely populated area affected by landslides, only a few homes were impacted and there were no recorded deaths due to landslides. Landslides caused major disruption with all road and rail links with Kaikōura being severed. The landslides affecting State Highway 1 (the main road link in the South Island of New Zealand) and the South Island main trunk railway extended from Ward in Marlborough all the way to the south of Oaro in North Canterbury. The majority of landslides occurred in two geological and geotechnically distinct materials reflective of the dominant rock types in the affected area. In the Neogene sedimentary rocks (sandstones, limestones and siltstones) of the Hurunui District, North Canterbury and around Cape Campbell in Marlborough, first-time and reactivated rock-slides and rock-block slides were the dominant landslide type. These rocks also tend to have rock material strength values in the range of 5-20 MPa. In the Torlesse ‘basement’ rocks (greywacke sandstones and argillite) of the Kaikōura Ranges, first-time rock and debris avalanches were the dominant landslide type. These rocks tend to have material strength values in the range of 20-50 MPa. A feature of this earthquake is the large number (more than 200) of valley blocking landslides it generated. This was partly due to the steep and confined slopes in the area and the widely distributed strong ground shaking. The largest landslide dam has an approximate volume of 12(±2) M m3 and the debris from this travelled about 2.7 km2 downslope where it formed a dam blocking the Hapuku River. The long-term stability of cracked slopes and landslide dams from future strong earthquakes and large rainstorms are an ongoing concern to central and local government agencies responsible for rebuilding homes and infrastructure. A particular concern is the potential for debris floods to affect downstream assets and infrastructure should some of the landslide dams breach catastrophically. At least twenty-one faults ruptured to the ground surface or sea floor, with these surface ruptures extending from the Emu Plain in North Canterbury to offshore of Cape Campbell in Marlborough. The mapped landslide distribution reflects the complexity of the earthquake rupture. Landslides are distributed across a broad area of intense ground shaking reflective of the elongate area affected by fault rupture, and are not clustered around the earthquake epicentre. The largest landslides triggered by the earthquake are located either on or adjacent to faults that ruptured to the ground surface. Surface faults may provide a plane of weakness or hydrological discontinuity and adversely oriented surface faults may be indicative of the location of future large landslides. Their location appears to have a strong structural geological control. Initial results from our landslide investigations suggest predictive models relying only on ground-shaking estimates underestimate the number and size of the largest landslides that occurred.more » « less
-
Abstract Bedrock landslides shape topography and mobilize large volumes of sediment. Yet, interactions between landslide‐produced sediment and fluvial systems that together govern large‐scale landscape evolution are not well understood. To explain morphological patterns observed in steep, landslide‐prone terrain, we explicitly model stochastic landsliding and associated sediment dynamics. The model accounts for several common landscape features such as slope frequency distributions, which include values in excess of regional stability limits, quasi‐planar hillslopes decorated with straight, closely spaced channel‐like features, and accumulation of sediment in valley networks rather than on hillslopes. Stochastic landsliding strongly affects the magnitude and timing of sediment supply to the fluvial system. We show that intermittent sediment supply is ultimately reflected in topography. At dynamic equilibrium, landslide‐derived sediment pulses generate persistent landscape dynamism through the formation and breaching of landslide dams and epigenetic gorges as landslides force shifts in channel positions. Our work highlights the importance of interactions between landslides and sediment dynamics that ultimately control landscape‐scale response to environmental change.more » « less
-
Abstract The retreat of glaciers in response to global warming has the potential to trigger landslides in glaciated regions around the globe. Landslides that enter fjords or lakes can cause tsunamis, which endanger people and infrastructure far from the landslide itself. Here we document the ongoing movement of an unstable slope (total volume of 455 × 106m3) in Barry Arm, a fjord in Prince William Sound, Alaska. The slope moved rapidly between 2010 and 2017, yielding a horizontal displacement of 120 m, which is highly correlated with the rapid retreat and thinning of Barry Glacier. Should the entire unstable slope collapse at once, preliminary tsunami modeling suggests a maximum runup of 300 m near the landslide, which may have devastating impacts on local communities. Our findings highlight the need for interdisciplinary studies of recently deglaciated fjords to refine our understanding of the impact of climate change on landslides and tsunamis.more » « less
-
Post-wildfire mass wasting is a major problem throughout many regions worldwide. Recent dramatic increases in global wildfire activities coupled with a shift in wildfire-prone elevation to higher altitudes raise the need to better predict post-fire rainfall-triggered landslides. Despite its importance, only a limited number of studies have investigated landslide susceptibility in areas hit by wildfires using hydromechanical models. However, most of these studies follow either qualitative or semi-quantitative approaches without explicitly considering the fire’s effects on the impacted area’s physical behavior. This study aims to develop and employ a physics-based framework to generate susceptibility maps of rainfall-triggered shallow landslides in areas disturbed by wildfire. A coupled hydromechanical model considering unsaturated flow and root reinforcement is integrated into an infinite slope stability model to simulate the triggering of shallow landslides from rainfall. The impact of fire is considered through its effects on soil and land cover properties, near-surface processes, and canopy interception. The developed model is then integrated into a geographic information system (GIS) to characterize the regional distribution of landslide potential and its variability considering topography, geology, land cover, and burn severity. The proposed framework was tested for a study site in Southern California. The site was burned in the San Gabriel Complex Fire in June 2016 and experienced widespread landsliding almost three years later following an extreme rainstorm in January 2019. The proposed framework could successfully model the location of observed shallow landslides. The model also revealed a significantly higher likelihood for slope failure in areas burned at moderate to high severities as opposed to unburned and low-burn severity areas. The findings of this study can be employed to predict the timing and general locations of rainfall-triggered shallow landslides following wildfires.more » « less
An official website of the United States government

