skip to main content


Search for: All records

Award ID contains: 2224135

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zonta, Daniele ; Su, Zhongqing ; Glisic, Branko (Ed.)
    Recent developments in autonomous vehicle (AV) or connected AVs (CAVs) technology have led to predictions that fully self-driven vehicles could completely change the transportation network over the next decades. However, at this stage, AVs and CAVs are still in the development stage which requires various trails in the field and machine learning through autonomous driving miles on real road networks. Until the complete market adoption of autonomous technology, a long transition period of coexistence between conventional and autonomous cars would exist. It is important to study and develop the expected driving behavior of future autonomous cars and the traffic simulation platforms provide an opportunity for researchers and technology developers to implement and assess the different behaviors of self-driving vehicle technology before launching it to the actual ground. This study utilizes PTV VISSIM microsimulation platform to evaluate the mobility performance of unmanned vehicles at a 4-way signalized traffic intersection. The software contains three different AV-ready driving logics such as AV-cautious, AV-normal, and AV-aggressive which were tested against the performance of the conventional vehicles, and the results of the study revealed that the overall network operational performance improves with the progressive introduction of AVs using AV-normal, and AV-aggressive driving behaviors while the AV-cautious driving behavior stays conservative and deteriorates the traffic performance. 
    more » « less
  2. Zonta, Daniele ; Su, Zhongqing ; Glisic, Branko (Ed.)
    With the rapid development of smart cities, interest in vehicle automation continues growing. Autonomous vehicles are becoming more and more popular among people and are considered to be the future of ground transportation. Autonomous vehicles, either with adaptive cruise control (ACC) or cooperative adaptive cruise control (CACC), provide many possibilities for smart transportation in a smart city. However, traditional vehicles and autonomous vehicles will have to share the same road systems until autonomous vehicles fully penetrate the market over the next few decades, which leads to conflicts because of the inconsistency of human drivers. In this paper, the performance of autonomous vehicles with ACC/CACC and traditional vehicles in mixed driver environments, at a signalized intersection, were evaluated using the micro-simulator VISSIM. In the simulation, the vehicles controlled by the ACC/CACC and Wiedemann 99 (W99) model represent the behavior of autonomous vehicles and human driver vehicles, respectively. For these two different driver environments, four different transport modes were comprehensively investigated: full light duty cars, full trucks, full motorcycles, and mixed conditions. In addition, ten different seed numbers were applied to each model to avoid coincidence. To evaluate the driving behavior of the human drivers and autonomous vehicles, this paper will compare the total number of stops, average velocity, and vehicle delay of each model at the signalized traffic intersection based on a real road intersection in Minnesota. 
    more » « less