Machine learning represents a milestone in data-driven research, including material informatics, robotics, and computer-aided drug discovery. With the continuously growing virtual and synthetically available chemical space, efficient and robust quantitative structure–activity relationship (QSAR) methods are required to uncover molecules with desired properties. Herein, we propose variable-length-array SMILES-based (VLA-SMILES) structural descriptors that expand conventional SMILES descriptors widely used in machine learning. This structural representation extends the family of numerically coded SMILES, particularly binary SMILES, to expedite the discovery of new deep learning QSAR models with high predictive ability. VLA-SMILES descriptors were shown to speed up the training of QSAR models based on multilayer perceptron (MLP) with optimized backpropagation (ATransformedBP), resilient propagation (iRPROP‒), and Adam optimization learning algorithms featuring rational train–test splitting, while improving the predictive ability toward the more compute-intensive binary SMILES representation format. All the tested MLPs under the same length-array-based SMILES descriptors showed similar predictive ability and convergence rate of training in combination with the considered learning procedures. Validation with the Kennard–Stone train–test splitting based on the structural descriptor similarity metrics was found more effective than the partitioning with the ranking by activity based on biological activity values metrics for the entire set of VLA-SMILES featured QSAR. Robustness and the predictive ability of MLP models based on VLA-SMILES were assessed via the method of QSAR parametric model validation. In addition, the method of the statistical H0 hypothesis testing of the linear regression between real and observed activities based on the F2,n−2 -criteria was used for predictability estimation among VLA-SMILES featured QSAR-MLPs (with n being the volume of the testing set). Both approaches of QSAR parametric model validation and statistical hypothesis testing were found to correlate when used for the quantitative evaluation of predictabilities of the designed QSAR models with VLA-SMILES descriptors.
more »
« less
Topological regression as an interpretable and efficient tool for quantitative structure-activity relationship modeling
Abstract Quantitative structure-activity relationship (QSAR) modeling is a powerful tool for drug discovery, yet the lack of interpretability of commonly used QSAR models hinders their application in molecular design. We propose a similarity-based regression framework, topological regression (TR), that offers a statistically grounded, computationally fast, and interpretable technique to predict drug responses. We compare the predictive performance of TR on 530 ChEMBL human target activity datasets against the predictive performance of deep-learning-based QSAR models. Our results suggest that our sparse TR model can achieve equal, if not better, performance than the deep learning-based QSAR models and provide better intuitive interpretation by extracting an approximate isometry between the chemical space of the drugs and their activity space.
more »
« less
- PAR ID:
- 10514568
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Using machine learning (ML) to develop quantitative structure—activity relationship (QSAR) models for contaminant reactivity has emerged as a promising approach because it can effectively handle non-linear relationships. However, ML is often data-demanding, whereas data scarcity is common in QSAR model development. Here, we proposed two approaches to address this issue: combining small datasets and transferring knowledge between them. First, we compiled four individual datasets for four oxidants, i.e., SO4•-, HClO, O3 and ClO2, each dataset containing a different number of contaminants with their corresponding rate constants and reaction conditions (pH and/or temperature). We then used molecular fingerprints (MF) or molecular descriptors (MD) to represent the contaminants; combined them with ML algorithms to develop individual QSAR models for these four datasets; and interpreted the models by the Shapley Additive exPlantion (SHAP) method. The results showed that both the optimal contaminant representation and the best ML algorithm are dataset dependent. Next, we merged these four datasets and developed a unified model, which showed better predictive performance on the datasets of HClO, O3 and ClO2 because the model ‘corrected’ some wrongly learned effects of several atom groups. We further developed knowledge transfer models based on the second approach, the effectiveness of which depends on if there is consistent knowledge shared between the two datasets as well as the predictive performance of the respective single models. This study demonstrated the benefit of combining small similar datasets and transferring knowledge between them, which can be leveraged to boost the predictive performance of ML-assisted QSAR models.more » « less
-
Abstract Modern data mining techniques using machine learning (ML) and deep learning (DL) algorithms have been shown to excel in the regression-based task of materials property prediction using various materials representations. In an attempt to improve the predictive performance of the deep neural network model, researchers have tried to add more layers as well as develop new architectural components to create sophisticated and deep neural network models that can aid in the training process and improve the predictive ability of the final model. However, usually, these modifications require a lot of computational resources, thereby further increasing the already large model training time, which is often not feasible, thereby limiting usage for most researchers. In this paper, we study and propose a deep neural network framework for regression-based problems comprising of fully connected layers that can work with any numerical vector-based materials representations as model input. We present a novel deep regression neural network, iBRNet, with branched skip connections and multiple schedulers, which can reduce the number of parameters used to construct the model, improve the accuracy, and decrease the training time of the predictive model. We perform the model training using composition-based numerical vectors representing the elemental fractions of the respective materials and compare their performance against other traditional ML and several known DL architectures. Using multiple datasets with varying data sizes for training and testing, We show that the proposed iBRNet models outperform the state-of-the-art ML and DL models for all data sizes. We also show that the branched structure and usage of multiple schedulers lead to fewer parameters and faster model training time with better convergence than other neural networks. Scientific contribution: The combination of multiple callback functions in deep neural networks minimizes training time and maximizes accuracy in a controlled computational environment with parametric constraints for the task of materials property prediction.more » « less
-
null (Ed.)Abstract Background Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction . Results In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.more » « less
-
Metal-organic frameworks (MOFs), made from metal ions and organic linkers, are promising materials for drug delivery due to their porous morphology. These components significantly affect drug loading, but the wide variety of irons and linkers makes it challenging to systematically evaluate their drug loading capacities. Machine Learning (ML) provides predictive models for drug loading based on properties such as ion type, linker structure, and MOFs morphology (e.g. surface area). However, the accuracy of these models is affected by hyperparameters. To improve model performance, this work develops a genetic algorithm (GA)-based optimization approach to build ML models for predicting drug loading rates. Our results demonstrate the predictability and generalizability of this approach for estimating the drug-loading capacities of different material-drug combinations.more » « less
An official website of the United States government
