skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subaerial weathering drove stabilization of continents
Abstract Earth’s silica-rich continental crust is unique among the terrestrial planets and is critical for planetary habitability. Cratons represent the most imperishable continental fragments and form about 50% of the continental crust of the Earth, yet the mechanisms responsible for craton stabilization remain enigmatic1. Large tracts of strongly differentiated crust formed between 3 and 2.5 billion years ago, during the late Mesoarchaean and Neoarchaean time periods2. This crust contains abundant granitoid rocks with elevated concentrations of U, Th and K; the formation of these igneous rocks represents the final stage of stabilization of the continental crust2,3. Here, we show that subaerial weathering, triggered by the emergence of continental landmasses above sea level, facilitated intracrustal melting and the generation of peraluminous granitoid magmas. This resulted in reorganization of the compositional architecture of continental crust in the Neoarchaean period. Subaerial weathering concentrated heat-producing elements into terrigenous sediments that were incorporated into the deep crust, where they drove crustal melting and the chemical stratification required to stabilize the cratonic lithosphere. The chain of causality between subaerial weathering and the final differentiation of Earth’s crust implies that craton stabilization was an inevitable consequence of continental emergence. Generation of sedimentary rocks enriched in heat-producing elements, at a time in the history of the Earth when the rate of radiogenic heat production was on average twice the present-day rate, resolves a long-standing question of why many cratons were stabilized in the Neoarchaean period.  more » « less
Award ID(s):
2145334 2025122
PAR ID:
10514606
Author(s) / Creator(s):
;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
629
Issue:
8012
ISSN:
0028-0836
Page Range / eLocation ID:
609 to 615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The record of the first two billion years of Earth history (the Archean) is notoriously incomplete, yet crust of this age is present on every continent. Here we examine the Archean record of the Wyoming craton in the northern Rocky Mountains, U.S.A., which is both well-exposed and readily accessible. We identify three stages of Archean continental crust formation that are also recorded in other cratons. The youngest stage is characterized by a variety of Neoarchean rock assemblages that are indistinguishable from those produced by modern plate tectonic processes. The middle stage is typified by the trondhjemite-tonalite-granodiorite (TTG) association, which involved partial melting of older, mafic crust. This older mafic crust is not preserved but can be inferred from information in igneous and detrital zircon grains and isotopic compositions of younger rocks in Wyoming and other cratons. This sequence of crust formation characterizes all cratons, but the times of transition from one stage to the next vary from craton to craton. 
    more » « less
  2. Determining the mechanisms by which the earliest continental crust was generated and reworked is important for constraining the evolution of Earth’s geodynamic, surface, and atmospheric conditions. However, the details of early plate tectonic settings often remain obscured by the intervening ~4 Ga of crustal recycling. Covariations of U, Nb, Sc, and Yb in zircon have been shown to faithfully reflect Phanerozoic whole-rock-based plate-tectonic discriminators and are therefore useful in distinguishing zircons crystallized in ridge, plume, and arc-like environments, both in the present and in deep time. However, application of these proxies to deciphering tectonic settings on the early Earth has thus far been limited to select portions of the detrital zircon record. Here, we present in situ trace-element and oxygen isotope compositions for magmatic zircons from crystalline crustal rocks of the Acasta Gneiss Complex and the Saglek-Hebron Complex, Canada. Integrated with information from whole-rock geochemistry and zircon U-Pb, Hf, and O isotopes, our zircon U-Nb-Sc-Yb results reveal that melting of hydrated basalt was not restricted to a single tectonomagmatic process during the Archean but was operative during the reworking of Hadean protocrust and the generation of juvenile crust within two cratons, as early as 3.9 Ga. We observe zircon trace-element compositions indicative of hydrous melting in settings that otherwise host seemingly differing whole-rock geochemistry, zircon Hf, and zircon O isotopes, suggesting contemporaneous operation of stagnant-lid (oceanic plateau) and mobile-lid (arc-like) regimes in the early Archean. 
    more » « less
  3. NA (Ed.)
    Precambrian terrains preserving rocks older than 3.5 Ga contain an essential record of the crustal evolution of the primitive Earth. In this study, we investigated Eo-Paleoarchean rocks from the northern S˜ao Francisco Craton (NSFC) and the Borborema Province in northeastern Brazil to contribute to a more complete global isotopic record of this pivotal time in Earth’s history. Zircon U-Pb ages along with zircon Hf isotope compositions were obtained for migmatitic gneiss complexes in both terrains. Zircon U-Pb data from the NSFC yield well-defined populations with 207Pb/206Pb ages from 3.61 to 3.59 Ga and younger components at ~3.5 and ~3.4 Ga. Similarly, the Borborema Province gneiss yields a main zircon age population of 3.58 Ga and a younger ~3.5 Ga age component. The ~3.6 Ga zircon components yield consistently sub-chondritic Hf isotopic compositions with initial εHf between −1.9 and −3.1 for the NSFC and of εHf −0.5 for the Borborema Province. Gneisses from northeastern Brazil record a main crust forming period at 3.65–3.60 Ga with sub-chondritic Hf isotope compositions that indicate derivation from melting of a ~3.8 Ga source of broadly chondritic isotope composition, similar to that of many Eo-Paleoarchean gneisses worldwide. This Hf isotope record supports the existence of broadly chondritic mantle reservoir in the Eoarchean with development of depleted mantle and the appearance of evolved crust later in the Paleoarchean. 
    more » « less
  4. NA (Ed.)
    Precambrian terrains preserving rocks older than 3.5 Ga contain an essential record of the crustal evolution of the primitive Earth. In this study, we investigated Eo-Paleoarchean rocks from the northern S˜ao Francisco Craton (NSFC) and the Borborema Province in northeastern Brazil to contribute to a more complete global isotopic record of this pivotal time in Earth’s history. Zircon U-Pb ages along with zircon Hf isotope compositions were obtained for migmatitic gneiss complexes in both terrains. Zircon U-Pb data from the NSFC yield well-defined populations with 207Pb/206Pb ages from 3.61 to 3.59 Ga and younger components at ~3.5 and ~3.4 Ga. Similarly, the Borborema Province gneiss yields a main zircon age population of 3.58 Ga and a younger ~3.5 Ga age component. The ~3.6 Ga zircon components yield consistently sub-chondritic Hf isotopic compositions with initial εHf between −1.9 and −3.1 for the NSFC and of εHf −0.5 for the Borborema Province. Gneisses from northeastern Brazil record a main crust forming period at 3.65–3.60 Ga with sub-chondritic Hf isotope compositions that indicate derivation from melting of a ~3.8 Ga source of broadly chondritic isotope composition, similar to that of many Eo-Paleoarchean gneisses worldwide. This Hf isotope record supports the existence of broadly chondritic mantle reservoir in the Eoarchean with development of depleted mantle and the appearance of evolved crust later in the Paleoarchean. 
    more » « less
  5. Abstract Enabling the build-up of continental crust is a vital step in the stabilization of cratonic lithosphere. However, these initial crustal nuclei are commonly either destroyed by recycling or buried by younger rocks. In the Fennoscandian Shield, the oldest rocks are ca. 3.5 Ga, but ca. 3.7 Ga inherited and detrital zircons suggest the presence of an older, unexposed crustal substrate. We present U-Pb, O, and Hf isotope data from detrital zircons of three major Finnish rivers as well as zircon O and Hf isotope data from previously dated rocks of the Archean Suomujärvi and Pudasjärvi complexes, central Finland. Combined, these data indicate a previously unidentified ca. 3.75 Ga crustal nucleus in the Fennoscandian Shield. This adds to the growing number of Eoarchean nuclei recognized in Archean terranes around the globe, highlighting the importance of such nuclei in enabling the growth of continental crust. The isotope signatures of the Fennoscandian nucleus correlate with equivalent-aged rocks in Greenland, consistent with a common Eoarchean evolution for Fennoscandia and the North Atlantic craton. 
    more » « less