Users of Augmentative and Alternative Communication (AAC) may write letter-by-letter via an interface that uses a character language model. However, most state-of-the-art large pretrained language models predict subword tokens of variable length. We investigate how to practically use such models to make accurate and efficient character predictions. Our algorithm for producing character predictions from a subword large language model (LLM) provides more accurate predictions than using a classification layer, a byte-level LLM, or an n-gram model. Additionally, we investigate a domain adaptation procedure based on a large dataset of sentences we curated based on scoring how useful each sentence might be for spoken or written AAC communication. We find our procedure further improves model performance on simple, conversational text.
more »
« less
Byte-based Multilingual {NMT} for Endangered Languages
"Multilingual neural machine translation (MNMT) jointly trains a shared model for translation with multiple language pairs. However, traditional subword-based MNMT approaches suffer from out-of-vocabulary (OOV) issues and representation bottleneck, which often degrades translation performance on certain language pairs. While byte tokenization is used to tackle the OOV problems in neural machine translation (NMT), until now its capability has not been validated in MNMT. Additionally, existing work has not studied how byte encoding can benefit endangered language translation to our knowledge. We propose a byte-based multilingual neural machine translation system (BMNMT) to alleviate the representation bottleneck and improve translation performance in endangered languages. Furthermore, we design a random byte mapping method with an ensemble prediction to enhance our model robustness. Experimental results show that our BMNMT consistently and significantly outperforms subword/word-based baselines on twelve language pairs up to +18.5 BLEU points, an 840{\%} relative improvement.",
more »
« less
- Award ID(s):
- 2113906
- PAR ID:
- 10514658
- Editor(s):
- Calzolari, Nicoletta; Huang, Chu-Ren; Kim, Hansaem; Pustejovsky, James; Wanner, Leo; Choi, Key-Sun; Ryu, Pum-Mo; Chen, Hsin-Hsi; Donatelli, Lucia; Ji, Heng; Kurohashi, Sadao; Paggio, Patrizia; Xue, Nianwen; Kim, Seokhwan; Hahm, Younggyun; He, Zhong; Lee, Tony Kyungil; Santus, Enrico; Bond, Francis; Na, Seung-Hoon
- Publisher / Repository:
- International Committee on Computational Linguistics
- Date Published:
- Format(s):
- Medium: X
- Location:
- Gyeongju, Republic of Korea
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Current multilingual vision-language models either require a large number of additional parameters for each supported language, or suffer performance degradation as languages are added. In this paper, we-9*6 propose a Scalable Multilingual Aligned Language Representation (SMALR) that supports many languages with few model parameters without sacrificing downstream task performance. SMALR learns a fixed size language-agnostic representation for most words in a multilingual vocabulary, keeping language-specific features for just a few. We use a masked cross-language modeling loss to align features with context from other languages. Additionally, we propose a cross-lingual consistency module that ensures predictions made for a query and its machine translation are comparable. The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date. We evaluate on multilingual image-sentence retrieval and outperform prior work by 3–4% with less than 1/5th the training parameters compared to other word embedding methods.more » « less
-
null (Ed.)Current multilingual vision-language models either require a large number of additional parameters for each supported language, or suffer performance degradation as languages are added. In this paper, we-9*6 propose a Scalable Multilingual Aligned Language Representation (SMALR) that supports many languages with few model parameters without sacrificing downstream task performance. SMALR learns a fixed size language-agnostic representation for most words in a multilingual vocabulary, keeping language-specific features for just a few. We use a masked cross-language modeling loss to align features with context from other languages. Additionally, we propose a cross-lingual consistency module that ensures predictions made for a query and its machine translation are comparable. The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date. We evaluate on multilingual image-sentence retrieval and outperform prior work by 3–4% with less than 1/5th the training parameters compared to other word embedding methods.more » « less
-
What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications.more » « less
-
Task-oriented dialogue research has mainly focused on a few popular languages like English and Chinese, due to the high dataset creation cost for a new language. To reduce the cost, we apply manual editing to automatically translated data. We create a new multilingual benchmark, X-RiSAWOZ, by translating the Chinese RiSAWOZ to 4 languages: English, French, Hindi, Korean; and a code-mixed English- Hindi language. X-RiSAWOZ has more than 18,000 human-verified dialogue utterances for each language, and unlike most multilingual prior work, is an end-to-end dataset for building fully-functioning agents. The many difficulties we encountered in creating X-RiSAWOZ led us to develop a toolset to accelerate the post-editing of a new language dataset after translation. This toolset improves machine translation with a hybrid entity alignment technique that combines neural with dictionary-based methods, along with many automated and semi-automated validation checks. We establish strong baselines for X-RiSAWOZ by training dialogue agents in the zero- and few-shot settings where limited gold data is available in the target language. Our results suggest that our translation and post-editing methodology and toolset can be used to create new high-quality multilingual dialogue agents cost-effectively. Our dataset,more » « less
An official website of the United States government
