Designing the solid–electrolyte interphase (SEI) is critical for stable, fast-charging, low-temperature Li-ion batteries. Fostering a “fluorinated interphase,” SEI enriched with LiF, has become a popular design strategy. Although LiF possesses low Li-ion conductivity, many studies have reported favorable battery performance with fluorinated SEIs. Such a contradiction suggests that optimizing SEI must extend beyond chemical composition design to consider spatial distributions of different chemical species. In this work, we demonstrate that the impact of a fluorinated SEI on battery performance should be evaluated on a case-by-case basis. Sufficiently passivating the anode surface without impeding Li-ion transport is key. We reveal that a fluorinated SEI containing excessive and dense LiF severely impedes Li-ion transport. In contrast, a fluorinated SEI with well-dispersed LiF (i.e., small LiF aggregates well mixed with other SEI components) is advantageous, presumably due to the enhanced Li-ion transport across heterointerfaces between LiF and other SEI components. An electrolyte, 1 M LiPF6in 2-methyl tetrahydrofuran (2MeTHF), yields a fluorinated SEI with dispersed LiF. This electrolyte allows anodes of graphite, μSi/graphite composite, and pure Si to all deliver a stable Coulombic efficiency of 99.9% and excellent rate capability at low temperatures. Pouch cells containing layered cathodes also demonstrate impressive cycling stability over 1,000 cycles and exceptional rate capability down to −20 °C. Through experiments and theoretical modeling, we have identified a balanced SEI-based approach that achieves stable, fast-charging, low-temperature Li-ion batteries.
more »
« less
Operando spectral imaging of the lithium ion battery’s solid-electrolyte interphase
The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these “chemical fingerprints” to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime.
more »
« less
- Award ID(s):
- 2004897
- PAR ID:
- 10514762
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 28
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eadg5135
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The solid electrolyte interphase (SEI) dictates the cycling stability of lithium‐metal batteries. Here, direct atomic imaging of the SEI's phase components and their spatial arrangement is achieved, using ultralow‐dosage cryogenic transmission electron microscopy. The results show that, surprisingly, a lot of the deposited Li metal has amorphous atomic structure, likely due to carbon and oxygen impurities, and that crystalline lithium carbonate is not stable and readily decomposes when contacting the lithium metal. Lithium carbonate distributed in the outer SEI also continuously reacts with the electrolyte to produce gas, resulting in a dynamically evolving and porous SEI. Sulfur‐containing additives cause the SEI to preferentially generate Li2SO4and overlithiated lithium sulfate and lithium oxide, which encapsulate lithium carbonate in the middle, limiting SEI thickening and enhancing battery life by a factor of ten. The spatial mapping of the SEI gradient amorphous (polymeric → inorganic → metallic) and crystalline phase components provides guidance for designing electrolyte additives.more » « less
-
The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these “Li-free” cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first during cell operation. In this study, we have achieved a direct visualization and comprehensive analysis of the dynamic evolution of the Li interface. The critical metrics of the interfacial resistance, Li growth, and solid electrolyte interface (SEI) distribution during the initial dissolution/deposition processes were systematically investigated by employing multidimensional analysis methods. They include three-electrode impedance tests, in situ atomic force microscopy, scanning electrochemical microscopy, and cryogenic scanning transmission electron microscopy. The high-resolution imaging and real-time observations show that a loose, diffuse, and unevenly distributed SEI is formed during the initial dissolution process. This leads to the dramatically fast growth of Li during the subsequent deposition, deviating from Fick’s law, which exacerbates the interfacial impedance. The compactness of the interfacial structure and enrichment of electrolyte species at the surface during the initial deposition play critical roles in the long-term stability of Li anodes, as revealed by operando confocal Raman spectroscopic mapping. Our observations relate to ion transfer, morphological and structural evolution, and Li (de)solvation at Li interfaces, revealing the underlying pathways influenced by the initial dissolution process, which promotes a reconsideration of anode investigations and effective protection strategies.more » « less
-
Abstract A comprehensive understanding of the solid‐electrolyte interphase (SEI) in lithium‐ion batteries is crucial for improving energy efficiency, battery performance, and safety. In this study, a transformer‐based instance segmentation framework, integrating deep convolutional neural networks is introduced with a feature pyramid network (FPN), to quantitatively analyze High‐Resolution Transmission Electron Microscopy (HRTEM) images and explain the complex microstructural features of the SEI. The model is trained on a dataset of simulated HRTEM images generated using Density Functional Theory (DFT)‐optimized grain boundary (GB) structures and calibrated with experimental microscope parameters. The model achieves robust segmentation performance, with training and validation mean intersection over union (mIOU) values of 0.98 and 0.96, respectively. On unseen test data, the model attains mean area match (AM) scores of 91.4% for GBs, 92.3% for Li2CO3, 91.7% for LiF, 88.7% for LiOH, and 88.6% for Li2O. These quantitative results highlight the model's high fidelity and its ability to capture subtle variations in crystallographic orientations and material contrasts. By enabling detailed, statistically grounded segmentation of SEI components, the approach offers valuable insights into ion transport and degradation mechanisms, paving the way for more resilient and efficient energy storage solutions.more » « less
-
With more than 10 times the capacity of the graphite used in current commercial batteries, lithium metal is ideal for a high-capacity battery anode; however, lithium metal electrodes suffer from safety and efficiency problems that prevent their wide industrial adoption. Their intrinsic high reactivity towards most liquid organic electrolytes leads to lithium loss and dendrite growth, which result in poor efficiency and short circuiting. However, the multitude of factors that contribute to dendrite formation make determining a nucleation mechanism extremely difficult. Here, we study the intricate science of dendrite nucleation on metallic lithium by using an array of analytical techniques that provide simultaneous ultra-high spatial sensitivity and chemical selectivity. Our results reveal a 3D picture of the chemical make-up of the native Li surface and the resulting solid electrolyte interphase (SEI) with better than 200 nm resolution. We find that, contrary to the general understanding, the initial surface chemistry, not the topography, is the dominant factor leading to dendrite nucleation. Specifically, inhomogeneously distributed organic material in the native surface leads to inhomogeneously dispersed LiF-rich SEI regions where dendrite nucleation is favored. This has significant implications for battery research as it elucidates a mechanism for inhomogeneous SEI formation, something that is accepted, but not well understood, and highlights the importance of Li surface preparation for experimental studies, which is implicit in battery research, but not directly addressed in the literature. By homogenizing the initial lithium surface composition, and thus the SEI composition, we increase the number of dendrite nucleation sites and thereby decrease the dendrite size, which significantly increases the electrode lifetime.more » « less
An official website of the United States government

