Abstract The ability to print soft materials into predefined architectures with programmable nanostructures and mechanical properties is a necessary requirement for creating synthetic biomaterials that mimic living tissues. However, the low viscosity of common materials and lack of required mechanical properties in the final product present an obstacle to the use of traditional additive manufacturing approaches. Here, a new liquid‐in‐liquid 3D printing approach is used to successfully fabricate constructs with internal nanostructures using in situ self‐assembly during the extrusion of an aqueous solution containing surfactant and photocurable polymer into a stabilizing polar oil bath. Subsequent photopolymerization preserves the nanostructures created due to surfactant self‐assembly at the immiscible liquid–liquid interface, which is confirmed by small‐angle X‐ray scattering. Mechanical properties of the photopolymerized prints are shown to be tunable based on constituent components of the aqueous solution. The reported 3D printing approach expands the range of low‐viscosity materials that can be used in 3D printing, and enables robust constructs production with internal nanostructures and spatially defined features. The reported approach has broad applications in regenerative medicine by providing a platform to print self‐assembling biomaterials into complex tissue mimics where internal supramolecular structures and their functionality control biological processes, similar to natural extracellular matrices.
more »
« less
This content will become publicly available on June 14, 2025
A Versatile Approach to Stabilize Liquid–Liquid Interfaces using Surfactant Self‐Assembly
Abstract Stabilizing liquid–liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water‐oil interface is presented using the morphological transitions that occur during the self‐assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small‐angle X‐ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water‐oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid‐in‐liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid–liquid interfaces not only offers unprecedented opportunities for fine‐tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self‐healing, and porosity, which could have significant implications for various industries.
more »
« less
- PAR ID:
- 10514769
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The large‐scale fabrication of two‐dimensional periodic nanostructures in high quality holds great promises for building novel nanoscale devices. They have been conventionally produced using interface‐mediated self‐assembly strategies such as the Langmuir‐Blodgett and oil‐water interfacial assembly methods, which however are limited by the stringent requirements for the hydrophilicity/hydrophobicity of the particle surface. In this article, we review the recent progress on the air‐liquid interfacial self‐assembly to demonstrate that such strategies are simple, inexpensive, effective, scalable, and versatile in the fabrication of two‐dimensional periodic nanostructured arrays. They can be successfully employed to assemble nanoparticles of various compositions and surface properties into periodic nanostructured monolayer films, which find many important applications, for example, in the construction of colorimetric sensors for gas, chemical, and biomedical detection.more » « less
-
Subwavelength resonant lattices offer a wide range of fascinating spectral phenomena under broadside illumination. The resonance mechanism relies on the generation of lateral Bloch modes that are phase matched to evanescent diffraction orders. The spectral properties and the total number of resonance states are governed by the structure of leaky modes and the mode count. This study investigates the effect of interface modifications on the band dynamics and bound-state transitions in guided-mode resonant lattices. We provide photonic lattices comprising rectangular Si3N4 rods with a liquid film with an adjustable boundary. The band structures and band flips are examined through numerical simulations using the rigorous coupled-wave analysis (RCWA) method and analyzing the zero-order spectral reflectance as a function of the incident angle. The band structures and band flips are examined through numerical simulations, and the influences of the refractive index and the thickness of the oil layer on the band dynamics are investigated. The results reveal distinct resonance linewidths corresponding to different refractive indices of the oil layer. Furthermore, the effect of the oil thickness on the band dynamics is explored, demonstrating precise control over the number of propagating modes within the lattice structure. Theoretical simulations and experimental results are presented for a subwavelength silicon-nitride lattice combined with a liquid film featuring an adjustable boundary. The presence of a relatively thick liquid waveguiding region enables the emergence of additional modes, including the first four transverse-electric (TE) leaky modes, which produce observable resonance signatures. Through experimental manipulation of the basic lattice’s duty cycle, the four bands undergo quantifiable band transitions and closures. The experimental results obtained within the 1400–1600 nm spectral range exhibit reasonable agreement with the numerical analysis. These findings underscore the significant role played by the interface in shaping the band dynamics of the lattice structure, providing valuable insights into the design and optimization of photonic lattices with adjustable interfaces.more » « less
-
Liquid–liquid interfaces hold the potential to serve as versatile platforms for dynamic processes, due to their inherent fluidity and capacity to accommodate surface-active materials. This study explores laser-driven actuation of liquid–liquid interfaces with and without loading of gold nanoparticles and further exploits the laser-actuated interfaces with nanoparticles for tunable photonics. Upon laser exposure, gold nanoparticles were rearranged along the interface, enabling the reconfigurable, small-aperture modulation of light transmission and the tunable lensing effect. Adapting the principles of optical and optothermal tweezers, we interpreted the underlying mechanisms of actuation and modulation as a synergy of optomechanical and optothermal effects. Our findings provide an analytical framework for understanding microscopic interfacial behaviors, contributing to potential applications in tunable photonics and interfacial material engineering.more » « less
-
ABSTRACT: The presence of asphaltene at both fluid−fluid and fluid−solid interfaces has a wide impact on petroleum recovery processes, for example, by stabilizing oil−gas−water dispersions, adsorbing on reservoir rock surfaces and thus changing their wetting properties, and forming deposits in oil−gas production systems. The Yen-Mullins model for asphaltene behavior in bulk fluids provides a framework for understanding a diverse range of phenomena related to the adsorption dynamics of asphaltene at interfaces and how the adsorbed layers are structured. In this work, we address the relatively less explored parameter, which is accounting for the size and shape of the particles on the interfacial properties and emulsion stability. We discuss our investigations of the asphaltene adsorption and its effects, focusing on oil−water interfaces, and propose a lattice-gas model to explain the experimental observations of the interfacial tension and rheology.more » « less