Yttrium iron garnet (YIG) magnonics has garnered significant research interest because of the unique properties of magnons (quasiparticles of collective spin excitation) for signal processing. In particular, hybrid systems based on YIG magnonics show great promise for quantum information science due to their broad frequency tunability and strong compatibility with other platforms. However, their broad applications have been severely constrained by substantial microwave loss in the gadolinium gallium garnet (GGG) substrate at cryogenic temperatures. In this study, we demonstrate that YIG thin films can be spalled from YIG/GGG samples. Our approach is validated by measuring hybrid devices comprising superconducting resonators and spalled YIG films, which exhibit anti-crossing features that indicate strong coupling between magnons and microwave photons. Such new capability of separating YIG thin films from GGG substrates via spalling and the integrated superconductor-YIG devices represent a significant advancement for integrated magnonic devices, paving the way for advanced magnon-based coherent information processing.
- PAR ID:
- 10514808
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 36
- Issue:
- 36
- ISSN:
- 0953-8984
- Format(s):
- Medium: X Size: Article No. 363501
- Size(s):
- Article No. 363501
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnonics, which employs spin-waves to transmit and process information, is a promising venue for low-power data processing. One of the major challenges is the local control of the spin-wave propagation path. Here, we introduce the concept of writable magnonics by taking advantage of the highly flexible reconfigurability and rewritability of artificial spin ice systems. Using micromagnetic simulations, we show that globally switchable spin-wave propagation and locally writable spin-wave nanochannels can be realized in a ferromagnetic thin film underlying an artificial pinwheel spin ice. The rewritable magnonics enabled by reconfigurable spin wave nanochannels provides a unique setting to design programmable magnonic circuits and logic devices for ultra-low power applications.
-
Abstract Hybrid magnonic systems are a newcomer for pursuing coherent information processing owing to their rich quantum engineering functionalities. One prototypical example is hybrid magnonics in antiferromagnets with an easy-plane anisotropy that resembles a quantum-mechanically mixed two-level spin system through the coupling of acoustic and optical magnons. Generally, the coupling between these orthogonal modes is forbidden due to their opposite parity. Here we show that the Dzyaloshinskii–Moriya-Interaction (DMI), a chiral antisymmetric interaction that occurs in magnetic systems with low symmetry, can lift this restriction. We report that layered hybrid perovskite antiferromagnets with an interlayer DMI can lead to a strong intrinsic magnon-magnon coupling strength up to 0.24 GHz, which is four times greater than the dissipation rates of the acoustic/optical modes. Our work shows that the DMI in these hybrid antiferromagnets holds promise for leveraging magnon-magnon coupling by harnessing symmetry breaking in a highly tunable, solution-processable layered magnetic platform.
-
Nonreciprocal magnon propagation has recently become a highly potential approach of developing chip-embedded microwave isolators for advanced information processing. However, it is challenging to achieve large nonreciprocity in miniaturized magnetic thin-film devices because of the difficulty of distinguishing propagating surface spin waves along the opposite directions when the film thickness is small. In this work, we experimentally realize unidirectional microwave transduction with sub-micrometer-wavelength propagating magnons in a yttrium iron garnet (YIG) thin-film delay line. We achieve a non-decaying isolation of 30 dB with a broad field-tunable bandpass frequency range up to 14 GHz. The large isolation is due to the selection of chiral magnetostatic surface spin waves with the Oersted field generated from the coplanar waveguide antenna. Increasing the geometry ratio between the antenna width and YIG thickness drastically reduces the nonreciprocity and introduces additional magnon transmission bands. Our results pave the way for on-chip microwave isolation and tunable delay line with short-wavelength magnonic excitations.
-
Optical control of magnons in two-dimensional (2D) materials promises new functionalities for spintronics and magnonics in atomically thin devices. Here, we report control of magnon dynamics, using laser polarization, in a ferromagnetic van der Waals (vdW) material, Fe3.6Co1.4GeTe2. The magnon amplitude, frequency, and lifetime are controlled and monitored by time-resolved pump-probe spectroscopy. We show substantial (over 25%) and continuous modulation of magnon dynamics as a function of incident laser polarization. Our results suggest that the modification of the effective demagnetization field and magnetic anisotropy by the pump laser pulses with different polarizations is due to anisotropic optical absorption. This implies that pump laser pulses modify the local spin environment, which enables the launch of magnons with tunable dynamics. Our first-principles calculations confirm the anisotropic optical absorption of different crystal orientations. Our findings suggest a new route for the development of opto-spintronic or opto-magnonic devices.