skip to main content


Title: Unidirectional microwave transduction with chirality selected short-wavelength magnon excitations

Nonreciprocal magnon propagation has recently become a highly potential approach of developing chip-embedded microwave isolators for advanced information processing. However, it is challenging to achieve large nonreciprocity in miniaturized magnetic thin-film devices because of the difficulty of distinguishing propagating surface spin waves along the opposite directions when the film thickness is small. In this work, we experimentally realize unidirectional microwave transduction with sub-micrometer-wavelength propagating magnons in a yttrium iron garnet (YIG) thin-film delay line. We achieve a non-decaying isolation of 30 dB with a broad field-tunable bandpass frequency range up to 14 GHz. The large isolation is due to the selection of chiral magnetostatic surface spin waves with the Oersted field generated from the coplanar waveguide antenna. Increasing the geometry ratio between the antenna width and YIG thickness drastically reduces the nonreciprocity and introduces additional magnon transmission bands. Our results pave the way for on-chip microwave isolation and tunable delay line with short-wavelength magnonic excitations.

 
more » « less
Award ID(s):
2246254
NSF-PAR ID:
10489596
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
2
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic heterostructures consisting of single‐crystal yttrium iron garnet (YIG) films coated with platinum are widely used in spin‐wave experiments related to spintronic phenomena such as the spin‐transfer‐torque, spin‐Hall, and spin‐Seebeck effects. However, spin waves in YIG/Pt bilayers experience much stronger attenuation than in bare YIG films. For micrometer‐thick YIG films, this effect is caused by microwave eddy currents in the Pt layer. This paper reports that by employing an excitation configuration in which the YIG film faces the metal plate of the microstrip antenna structure, the eddy currents in Pt are shunted and the transmission of the Damon–Eschbach surface spin wave is greatly improved. The reduction in spin‐wave attenuation persists even when the Pt coating is separated from the ground plate by a thin dielectric layer. This makes the proposed excitation configuration suitable for injection of an electric current into the Pt layer and thus for application in spintronics devices. The theoretical analysis carried out within the framework of the electrodynamic approach reveals how the platinum nanolayer and the nearby highly conductive metal plate affect the group velocity and the lifetime of the Damon–Eshbach surface wave and how these two wavelength‐dependent quantities determine the transmission characteristics of the spin‐wave device.

     
    more » « less
  2. Abstract We demonstrate direct probing of strong magnon–photon coupling using Brillouin light scattering (BLS) spectroscopy in a planar geometry. The magnonic hybrid system comprises a split-ring resonator loaded with epitaxial yttrium iron garnet thin films of 200 nm and 2.46  μ m thickness. The BLS measurements are combined with microwave spectroscopy measurements where both biasing magnetic field and microwave excitation frequency are varied. The cooperativity for the 200 nm-thick YIG films is 1.1, and larger cooperativity of 29.1 is found for the 2.46 μ m-thick YIG film. We show that BLS is advantageous for probing the magnonic character of magnon–photon polaritons, while microwave absorption is more sensitive to the photonic character of the hybrid excitation. A miniaturized, planar device design is imperative for the potential integration of magnonic hybrid systems in future coherent information technologies, and our results are a first stepping stone in this regard. Furthermore, successfully detecting the magnonic hybrid excitation by BLS is an essential step for the up-conversion of quantum signals from the microwave to the optical regime in hybrid quantum systems. 
    more » « less
  3. Abstract

    Spin waves, collective dynamic magnetic excitations, offer crucial insights into magnetic material properties. Rare‐earth iron garnets offer an ideal spin‐wave (SW) platform with long propagation length, short wavelength, gigahertz frequency, and applicability to magnon spintronic platforms. Of particular interest, thulium iron garnet (TmIG) has attracted huge interest recently due to its successful growth down to a few nanometers, observed topological Hall effect, and spin‐orbit torque‐induced switching effects. However, there is no direct spatial measurement of its SW properties. This work uses diamond nitrogen‐vacancy (NV) magnetometry in combination with SW electrical transmission spectroscopy to study SW transport properties in TmIG thin films. NV magnetometry allows probing spin waves at the sub‐micrometer scale, seen by the amplification of the local microwave magnetic field due to the coupling of NV spin qubits with the stray magnetic field produced by the microwave‐excited spin waves. By monitoring the NV spin resonances, the SW properties in TmIG thin films are measured as a function of the applied magnetic field, including their amplitude, decay length (≈50 µm), and wavelength (0.8–2 µm). These results pave the way for studying spin qubit‐magnon interactions in rare‐earth magnetic insulators, relevant to quantum magnonics applications.

     
    more » « less
  4. Abstract

    Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent sub-terahertz (THz) magnons in ferromagnetic (FM) and antiferromagnetic (AFM) thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are also performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject sub-THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Using a dynamical phase-field model that considers the coupled dynamics of acoustic waves, spin waves, and EM waves, we show that the emitted EM wave retains the spectral information of all the sub-THz magnon modes and has a sufficiently large amplitude for near-field detection. These predictions indicate that the excitation and detection of sub-THz magnons can be realized in rationally designed FM or AFM thin-film heterostructures via ultrafast optical-pump THz-emission-probe spectroscopy.

     
    more » « less
  5. Pure spin currents can be generated via thermal excitations of magnons. These magnon spin currents serve as carriers of information in insulating materials, and controlling them using electrical means may enable energy efficient information processing. Here, we demonstrate electric field control of magnon spin currents in the antiferromagnetic insulator Cr 2 O 3 . We show that the thermally driven magnon spin currents reveal a spin-flop transition in thin-film Cr 2 O 3 . Crucially, this spin-flop can be turned on or off by applying an electric field across the thickness of the film. Using this tunability, we demonstrate electric field–induced switching of the polarization of magnon spin currents by varying only a gate voltage while at a fixed magnetic field. We propose a model considering an electric field–dependent spin-flop transition, arising from a change in sublattice magnetizations via a magnetoelectric coupling. These results provide a different approach toward controlling magnon spin current in antiferromagnets. 
    more » « less