skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergent evolution of ventral adaptations for enrolment in trilobites and extant euarthropods
The ability to enrol for protection is an effective defensive strategy that has convergently evolved multiple times in disparate animal groups ranging from euarthropods to mammals. Enrolment is a staple habit of trilobites, and their biomineralized dorsal exoskeleton offered a versatile substrate for the evolution of interlocking devices. However, it is unknown whether trilobites also featured ventral adaptations for enrolment. Here, we report ventral exoskeletal adaptations that facilitate enrolment in exceptionally preserved trilobites from the Middle Ordovician Walcott–Rust Quarry in New York State, USA. Walcott–Rust trilobites reveal the intricate three-dimensional organization of the non-biomineralized ventral anatomy preserved as calcite casts, including the spatial relationship between the articulated sternites (i.e. ventral exoskeletal plates) and the wedge-shaped protopodites. Enrolment in trilobites is achieved by ventrally dipping the anterior margin of the sternites during trunk flexure, facilitated by the presence of flexible membranes, and with the close coupling of the wedge-shaped protopodites. Comparisons with the ventral morphology of extant glomerid millipedes and terrestrial isopods reveal similar mechanisms used for enrolment. The wedge-shaped protopodites of trilobites closely resemble the gnathobasic coxa/protopodite of extant horseshoe crabs. We propose that the trilobites' wedge-shaped protopodite simultaneously facilitated tight enrolment and gnathobasic feeding with the trunk appendages.  more » « less
Award ID(s):
2047192
PAR ID:
10514873
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society Publishing
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2013
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arthropods are characterized by having an exoskeleton, paired jointed appendages and segmented body. The number and shape of those segments vary dramatically and unravelling the evolution of segmentation is fundamental to our understanding of arthropod diversification. Because trilobites added segments to the body post-hatching which were expressed and preserved in biomineralized exoskeletal sclerites, their fossil record provides an excellent system for understanding the early evolution of segmentation in arthropods. Over the last 200 years, palaeontologists have hypothesized trends in segment number and allocation in the trilobite body, but they have never been rigorously tested. We tabulated the number of segments in the post-cephalic body for over 1500 species, selected to maximize taxonomic, geographical and temporal representation. Analysis reveals long-term shifts in segment number and allocation over the 250-million-year evolutionary history of the clade. For most of the Palaeozoic, the median number of segments in the body did not change. Instead, the total range decreased over time and there was long-term increase in the proportion of segments allocated to the fused terminal sclerite relative to the articulated thoracic region. There was also increased conservation of thoracic segment number within families. Neither taxonomic turnover nor trends in functionally relevant defensive behaviour sufficiently explain these patterns. 
    more » « less
  2. Three-dimensional models reveal how the mechanics of exoskeletal enrolment changed during the development of a model organism for insights into ancient arthropod development, the 429-million-year-old trilobite Aulacopleura koninckii. Changes in the number, size and allocation of segments within the trunk, coupled with the need to maintain effective exoskeletal shielding of soft tissue during enrolment, necessitated a transition in enrolment style about the onset of mature growth. During an earlier growth phase, enrolment was sphaeroidal, with the venter of the trunk fitting exactly against that of the head. In later growth, if lateral exoskeletal encapsulation was to be maintained trunk length proportions did not permit such exact fitting, requiring an alternative, non-sphaeoridal enrolment style. Our study favours the adoption of a posture in later growth in which the posterior trunk extended beyond the front of the head. This change in enrolment accommodated a pattern of notable variation in the number of mature trunk segments, well known to characterize the development of this species. It suggests how an animal whose early segmental development was remarkably precisely controlled was able to realize the marked variation in mature segment number that was related, apparently, to life in a physically challenging, reduced oxygen setting. 
    more » « less
  3. null (Ed.)
    Whether the upper limb branch of Paleozoic “biramous” arthropods, including trilobites, served a respiratory function has been much debated. Here, new imaging of the trilobite Triarthrus eatoni shows that dumbbell-shaped filaments in the upper limb branch are morphologically comparable with gill structures in crustaceans that aerate the hemolymph. In Olenoides serratus , the upper limb’s partial articulation to the body via an extended arthrodial membrane is morphologically comparable to the junction of the respiratory book gill of Limulus and differentiates it from the typically robust exopod junction in Chelicerata or Crustacea. Apparently limited mechanical rotation of the upper branch may have protected the respiratory structures. Partial attachment of the upper branch to the body wall may represent an intermediate state in the evolution of limb branch fusion between dorsal attachment to the body wall, as in Radiodonta, and ventral fusion to the limb base, as in extant Euarthropoda. 
    more » « less
  4. Trilobites are a well-preserved group of arthropods which have been documented from the Cambrian to the end of the Permian.Abnormalities, such as injuries or teratological (developmental) defects, have been observed and described in multiple individualsacross a wide range of species. Due to the rarity of such individuals, population scale investigations into the rate and possible causesof such abnormalities have been largely overlooked. Mississippian trilobites of the genus Kaskia were collected from two fossil sites,and individuals with segmentation abnormalities were observed to be prevalent at both localities. Comparison with the well-knowngenus Eldredgeops indicates that Kaskia exhibits a greater rate of abnormalities. One possible explanation for the prevalence ofabnormalities in the studied proetids is a genetic bottleneck that occurred as a result of the late Devonian mass extinction, which couldhave led to an increased risk of abnormal development. In order to make the claim that these abnormalities are biotic in origin, onemust rule out abiotic influence. A common environmental cause of abnormalities in extant marine arthropods is heavy metal pollution.To determine whether heavy metals may have acted as teratogens in these trilobites, representative individuals from both sites wereanalyzed for signs of metal incorporation into their exoskeleton using a Bruker M4 Tornado Plus micro XRF. No evidence of heavymetals was found, supporting the assertion that the segmentation defects are biotic in nature. These specimens are currently beinganalyzed for signs of diagenesis through petrographic analysis and SEM imaging, to ensure that the XRF readings reflectpaleoenvironmental conditions. 
    more » « less
  5. Archaeocyaths are biocalcified sponges largely restricted to the early Cambrian Period. Their perforated cup-shaped body facilitated filter feeding. Many of them were clonal modular animals that formed the earliest metazoan skeletal reefs. In Siberia, archaeocyaths extend from late Age 2 to Age 4 of the early Cambrian, representing an ∼15 m.y. range (ca. 525−510 Ma). Elsewhere, archaeocyaths emerged later than in Siberia and, in places, survived to the middle-late Cambrian. The existing fossil record thus indicates an out-of-Siberia scenario and delayed biomineralization in archaeocyaths relative to many other animals, which acquired biomineralization in the Fortunian Age of the early Cambrian. Here we report two microscopic archaeocyath species—Primocyathus uniseriatus Wang and Xiao, gen. et sp. nov. and Sinocyathus biseriatus Wang and Xiao, gen. et sp. nov.—from the Fortunian Kuanchuanpu Formation (ca. 533 Ma) in South China. Preserved as phosphatized internal molds, they are interpreted to have had a biomineralized, two-walled, perforated, cup-shaped skeleton. They were likely filter feeders, but their solitary habit and millimetric body size indicate that they were unlikely reef framework builders. They substantially extend the stratigraphic range of archaeocyaths, challenge the out-of-Siberia hypothesis, support archaeocyath biomineralization in the beginning of the Cambrian explosion, and imply a Precambrian divergence of sponge classes. 
    more » « less