Ocean acidification is predicted to impair marine calcifiers' abilities to produce shells and skeletons. We conducted laboratory experiments investigating the impacts of CO2‐induced ocean acidification (
This content will become publicly available on February 1, 2025
- Award ID(s):
- 2050923
- PAR ID:
- 10514885
- Editor(s):
- Telesca, L
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Proceedings American Geophysical Union
- Edition / Version:
- Final
- Volume:
- 0
- Issue:
- 0
- Page Range / eLocation ID:
- CE23A-05
- Subject(s) / Keyword(s):
- Oysters Climate change Salinity
- Format(s):
- Medium: X Size: 2 MB Other: pdfA
- Size(s):
- 2 MB
- Location:
- New Orleans, LA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Juvenile Eastern Oysters More Resilient to Extreme Ocean Acidification than Their Mud Crab Predators
Abstract p CO2 = 478–519, 734–835, 8,980–9,567; Ωcalcite = 7.3–5.7, 5.6–4.3, 0.6–0.7) on calcification rates of two estuarine calcifiers involved in a classic predator‐prey model system: adultPanopeus herbstii (Atlantic mud crab) and juvenileCrassostrea virginica (eastern oyster). Both oyster and crab calcification rates significantly decreased at the highestp CO2level. Notably, however, oysters maintained positive net calcification rates in the highest pCO2treatment that was undersaturated with respect to calcite, while mud crabs exhibited net dissolution (i.e., net loss of shell mass) in calcite‐undersaturated conditions. Secondary electron imaging of oyster shells revealed minor microstructural alterations in the moderate‐p CO2treatment, and major microstructural and macrostructural changes (including shell dissolution, delamination of periostracum) in the high‐p CO2treatment. These results underscore the threat that ocean acidification poses for marine organisms that produce calcium carbonate shells, illustrate the strong biological control that some marine calcifiers exert over their shell‐building process, and shows that ocean acidification differentially impacts the crab and oyster species involved in this classical predator‐prey model system. -
Many studies have examined the vulnerability of calcifying organisms, such as the eastern oyster (Crassostrea virginica), to externally forced ocean acidification, but the opposite interaction whereby oysters alter their local carbonate conditions has received far less attention. We present an exploratory model for isolating the impact that net calcification and respiration of aquacultured eastern oysters can have on calcite and aragonite saturation states, in the context of varying temperature, ocean-estuary mixing, and air-sea gas exchange. We apply the model to the Damariscotta River Estuary in Maine which has experienced rapid expansion of oyster aquaculture in the last decade. Our model uses oyster shell growth over the summer season and a previously derived relationship between net calcification and respiration to quantify impacts of net oyster calcification and gross metabolism on carbonate saturation states in open tidal waters. Under 2018 industry size and climate conditions, we estimate that oysters can lower carbonate saturation states by up to 5% (i.e., 0.17 and 0.11 units on calcite and aragonite saturation states, respectively) per day in late summer, with an average of 3% over the growing season. Perturbations from temperature and air-sea exchange are similar in magnitude. Under 2050 climate conditions and 2018 industry size, calcite saturation state will decrease by up to an additional 0.54 units. If the industry expands 3-fold by 2050, the calcite and aragonite saturation states may decrease by 0.73 and 0.47 units, respectively, on average for the latter half of the growing season when compared to 2018 climate conditions and industry size. Collectively, our results indicate that dense aggregations of oysters can have a significant role on estuarine carbonate chemistry.more » « less
-
Abstract The eastern oyster, Crassostrea virginica, forms reefs that provide critical services to the surrounding ecosystem. These reefs are at risk from climate change, in part because altered rainfall patterns may amplify local fluctuations in salinity, impacting oyster recruitment, survival, and growth. As in other marine organisms, warming water temperatures might interact with these changes in salinity to synergistically influence oyster physiology. In this study, we used comparative transcriptomics, measurements of physiology, and a field assessment to investigate what phenotypic changes C. virginica uses to cope with combined temperature and salinity stress in the Gulf of Mexico. Oysters from a historically low salinity site (Sister Lake, LA) were exposed to fully crossed temperature (20°C and 30°C) and salinity (25, 15, and 7 PSU) treatments. Using comparative transcriptomics on oyster gill tissue, we identified a greater number of genes that were differentially expressed (DE) in response to low salinity at warmer temperatures. Functional enrichment analysis showed low overlap between genes DE in response to thermal stress compared with hypoosmotic stress and identified enrichment for gene ontologies associated with cell adhesion, transmembrane transport, and microtubule-based process. Experiments also showed that oysters changed their physiology at elevated temperatures and lowered salinity, with significantly increased respiration rates between 20°C and 30°C. However, despite the higher energetic demands, oysters did not increase their feeding rate. To investigate transcriptional differences between populations in situ, we collected gill tissue from three locations and two time points across the Louisiana Gulf coast and used quantitative PCR to measure the expression levels of seven target genes. We found an upregulation of genes that function in osmolyte transport, oxidative stress mediation, apoptosis, and protein synthesis at our low salinity site and sampling time point. In summary, oysters altered their phenotype more in response to low salinity at higher temperatures as evidenced by a higher number of DE genes during laboratory exposure, increased respiration (higher energetic demands), and in situ differential expression by season and location. These synergistic effects of hypoosmotic stress and increased temperature suggest that climate change will exacerbate the negative effects of low salinity exposure on eastern oysters.
-
Seasonal Feeding Behavior of Aquaculture Eastern Oysters (Crassostrea virginica) in the Mid-Atlantic
Abstract The Eastern Oyster (
Crassostrea virginica ) is a commercially important aquaculture species and food resource along the Atlantic and Gulf coasts of the USA. In addition to its economic value, oyster aquaculture provides ecological value such as water quality improvement. Oyster filtration is highly variable as filtration behavior is influenced by environmental conditions, oyster size, and oyster energetic demands. However, average rates generated in laboratory experiments are often used to estimate the ecological impact of oyster filtration, and there is a need for field-based, farm-specific estimates of filtration that account for this variation. In this study, field experiments were conducted between September 2020 and September 2021 to estimate seasonal oyster filtration physiology at oyster farms in three different bays in the Mid-Atlantic (Barnegat Bay and Delaware Bay in New Jersey and Rehoboth Bay in Delaware). The physiological activity of oysters at each farm varied such that oysters at Barnegat Bay were the most active and oysters at Rehoboth Bay were the least active. Seasonal physiological trends were observed such that filtration behavior generally increased in warmer months. An increase in physiological activity across all farms was associated with an increase in salinity and temperature, but physiological activity at each farm was associated with a different suite of environmental variables including total particulate matter and the organic content of seston. This study provides a robust dataset which can be incorporated into models estimating ecological filtration rates in the Mid-Atlantic and adds to the growing body of evidence supporting bivalve aquaculture as a nutrient reduction strategy. -
Salinity conditions in oyster breeding grounds in the Gulf of Mexico are expected to drastically change due to increased precipitation from climate change and anthropogenic changes to local hydrology. We determined the capacity of the eastern oyster, Crassostrea virginica , to adapt via standing genetic variation or acclimate through transgenerational plasticity (TGP). We outplanted oysters to either a low- or medium-salinity site in Louisiana for 2 years. We then crossed adult parents using a North Carolina II breeding design, and measured body size and survival of larvae 5 dpf raised under low or ambient salinity. We found that TGP is unlikely to significantly contribute to low-salinity tolerance since we did not observe increased growth or survival in offspring reared in low salinity when their parents were also acclimated at a low-salinity site. However, we detected genetic variation for body size, with an estimated heritability of 0.68 ± 0.25 (95% CI). This suggests there is ample genetic variation for this trait to evolve, and that evolutionary adaptation is a possible mechanism through which oysters will persist with future declines in salinity. The results of this experiment provide valuable insights into successfully breeding low-salinity tolerance in this commercially important species.more » « less