skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Salinity on the Shell Formation of Eastern Oysters at Different Climactic Regions
Rapid environmental changes are predicted to impact shellfish abundance and their commercial value. The Eastern Oyster, Crassostrea virginica, a key foundation species with high environmental and commercial value has dramatically declined due to climate and anthropogenic impacts over the last century. Our current understanding of oyster vulnerability mostly stems from laboratory-based experiments but lacks studies in natural systems. Here, we investigated how shell production and composition of C. virginica are affected by natural salinity gradients under different temperature regimes. We studied variations in oyster shell shape, production, structure, composition, and organic matrix content in oysters from a temperate, Hudson River (NY), and subtropical, Galveston Bay (TX), estuary. parameters such as weight, area, density, chalk production, and organic matrix to see how the shells varied based on salinity and temperature. Our findings showed that Eastern oysters produced shells with higher chalk content under calcification-limiting environments (i.e., low temperature and low salinity). In comparison, shells with lower chalk content were produced in high predation environments (i.e., high temperatures and salinity). Temperate oyster's shell structure preferentially favored chemical protection against dissolution while subtropical oysters preferentially favored mechanical protection against predation. Oyster’s shell showed a strong capacity for protective responses under calcification- and predation-controlled environments.  more » « less
Award ID(s):
2050923
PAR ID:
10514885
Author(s) / Creator(s):
;
Editor(s):
Telesca, L
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Proceedings American Geophysical Union
Edition / Version:
Final
Volume:
0
Issue:
0
Page Range / eLocation ID:
CE23A-05
Subject(s) / Keyword(s):
Oysters Climate change Salinity
Format(s):
Medium: X Size: 2 MB Other: pdfA
Size(s):
2 MB
Location:
New Orleans, LA
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    The realized niche of many sessile intertidal organisms is constrained by different stressors that set boundaries for their distribution based on tidal elevation. Higher tidal elevation increases desiccation risk but can provide a refuge from predation. Conversely, deeper water increases feeding time and growth but also increases vulnerability to benthic predators. Eastern oysters Crassostrea virginica harden their shells in response to predator cues, which reduces their mortality from predation. We performed a field study to investigate if this defense mechanism could be manipulated to expand their realized niche and increase space for oyster survival and growth. We raised oysters in the presence of predators (blue crabs Callinectes sapidus) or in nopredator controls, measured changes in shell morphology, and then monitored oyster survival at different tidal elevations across 7 locations with different predator and salinity regimes. Oyster survival was significantly higher at the highest tidal elevations tested. Exposure to predators before deployment also significantly increased shell hardness and survival, with intertidal oysters experiencing greater improvement in survival from cue exposure than subtidal oysters. Intertidal placement (>15% exposure time) had larger effects on survival than predator exposure, but predator exposure increased oyster survival at all tidal elevations, suggesting that predator induction could help oysters both deter predators and resist abiotic stressors like desiccation, and perhaps increase the spatial areas where oysters can be restored 
    more » « less
  2. The realized niche of many sessile intertidal organisms is constrained by different stressors that set boundaries for their distribution based on tidal elevation. Higher tidal elevation increases desiccation risk but can provide a refuge from predation. Conversely, deeper water increases feeding time and growth but also increases vulnerability to benthic predators. Eastern oystersCrassostrea virginicaharden their shells in response to predator cues, which reduces their mortality from predation. We performed a field study to investigate if this defense mechanism could be manipulated to expand their realized niche and increase space for oyster survival and growth. We raised oysters in the presence of predators (blue crabsCallinectes sapidus) or in no-predator controls, measured changes in shell morphology, and then monitored oyster survival at different tidal elevations across 7 locations with different predator and salinity regimes. Oyster survival was significantly higher at the highest tidal elevations tested. Exposure to predators before deployment also significantly increased shell hardness and survival, with intertidal oysters experiencing greater improvement in survival from cue exposure than subtidal oysters. Intertidal placement (>15% exposure time) had larger effects on survival than predator exposure, but predator exposure increased oyster survival at all tidal elevations, suggesting that predator induction could help oysters both deter predators and resist abiotic stressors like desiccation, and perhaps increase the spatial areas where oysters can be restored. 
    more » « less
  3. Many studies have examined the vulnerability of calcifying organisms, such as the eastern oyster (Crassostrea virginica), to externally forced ocean acidification, but the opposite interaction whereby oysters alter their local carbonate conditions has received far less attention. We present an exploratory model for isolating the impact that net calcification and respiration of aquacultured eastern oysters can have on calcite and aragonite saturation states, in the context of varying temperature, ocean-estuary mixing, and air-sea gas exchange. We apply the model to the Damariscotta River Estuary in Maine which has experienced rapid expansion of oyster aquaculture in the last decade. Our model uses oyster shell growth over the summer season and a previously derived relationship between net calcification and respiration to quantify impacts of net oyster calcification and gross metabolism on carbonate saturation states in open tidal waters. Under 2018 industry size and climate conditions, we estimate that oysters can lower carbonate saturation states by up to 5% (i.e., 0.17 and 0.11 units on calcite and aragonite saturation states, respectively) per day in late summer, with an average of 3% over the growing season. Perturbations from temperature and air-sea exchange are similar in magnitude. Under 2050 climate conditions and 2018 industry size, calcite saturation state will decrease by up to an additional 0.54 units. If the industry expands 3-fold by 2050, the calcite and aragonite saturation states may decrease by 0.73 and 0.47 units, respectively, on average for the latter half of the growing season when compared to 2018 climate conditions and industry size. Collectively, our results indicate that dense aggregations of oysters can have a significant role on estuarine carbonate chemistry. 
    more » « less
  4. NA (Ed.)
    Oyster reef restoration efforts and on-bottom aquaculture are frequently plagued with high predation rates. Oysters are phenotypically plastic, and rearing juvenile oysters, Crassostrea virginica, with predator cues causes them to grow stronger shells that increases survivorship in the field. However, induced defenses (e.g., shell hardening in oysters) are often associated with cost-benefit trade-offs, and the extent the increased shell strength persists into adulthood and alters the growth of somatic and reproductive tissues remains unknown. We raised diploid oysters (used in reef restoration) and triploid oysters (used in aquaculture) with and without predator cues for one month before placing individuals on an oyster farm to grow to market size. Oyster shell characteristics, soft tissue mass, and reproductive investment were measured periodically over one year of culture and compared across treatments. Both diploid and triploid oysters had significantly stronger and smaller shells than controls at the end of their nursery period. However, while diploid shells became 15 % stronger and 17 % smaller than controls, triploid shells became 28 % stronger and 23 % smaller. Additionally, triploid oysters exposed to predator cues returned to the size of controls faster and maintained their shell strength differences longer than diploids. Differences in soft tissue mass between treatments mirrored the patterns exhibited in shell size and weight with greater initial physiological costs and faster recovery for triploid individuals. There was no significant difference in somatic or reproductive tissue mass between induced and control oysters of the same ploidy after seven months in the field. Triploid oysters were 15–110 % larger than diploids depending on the characteristic measured at maturity. Additionally, there was a significant interaction between treatment and ploidy because induced triploids had marginally greater growth than their control counterparts while induced diploids had marginally less growth than controls. These findings demonstrate that physiological costs of oysters reacting to predators in early life stages are minimal by the time individuals reach maturity. Early exposure to predator cues is a promising tool for improving oyster survivorship in restoration and aquaculture operations, especially in regions with high predation pressure. 
    more » « less
  5. Oysters,Crassostrea virginica, are economically and ecologically valuable but have severely declined, and restoration is needed. As with the restoration and aquaculture of many shellfish species, restored oyster reefs are often impeded by predation losses, reducing restoration success and restricting locations where restored reefs are viable. Like many organisms, shellfish can modify their morphology to reduce predation risk by detecting and responding to chemical signals emanating from predators and injured prey. Oysters grow heavier, stronger shells in response to predation risk cues, which improves their survival. We tested if using predator cues to trigger shell hardening in oysters could be performed over a scale suitable for oyster reef restoration and improve oyster survival long‐term. We constructed an intertidal oyster reef using oysters grown in a nursery for 4 weeks while exposed to either exudates from Blue crab (Callinectes sapidus) predators or grown in controls without predator cues. Oysters grown with predators were 65% harder than those grown in controls, and after 1 year in the field, had a 60% increase in survival. Predation losses on the restored reef were significant, and the benefit of predator induction for survival was highest at intermediate tidal elevations, presumably due to intermediate levels of predation and abiotic stress. Our results suggest that manipulating the morphology of cultivated or restored species can be an effective tool to improve survival in habitats where consumers impede restoration success. 
    more » « less