We analyze the influence of a massive photon in the dispersive interaction between two atoms in their fundamental states. We work in the context of Proca quantum electrodynamics. The photon mass not only introduces a new length scale but also gives rise to a longitudinal polarization for the electromagnetic field. We obtain explicitly the interaction energy between the atoms for any distance regime and consider several particular cases. We show that, for a given interatomic distance, the greater the photon mass the better it is the nonretarded approximation. Published by the American Physical Society2024
more »
« less
Delay-induced spontaneous dark-state generation from two distant excited atoms
We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2418249
- PAR ID:
- 10514913
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the combined effects of measurements and unitary evolution on the preparation of spin squeezing in an ensemble of atoms interacting with a single electromagnetic field mode inside a cavity. We derive simple criteria that determine the conditions at which measurement based entanglement generation overperforms unitary protocols. We include all relevant sources of decoherence and study both their effect on the optimal spin squeezing and the overall size of the measurement noise, which limits the dynamical range of quantum-enhanced phase measurements. Our conclusions are relevant for state-of-the-art atomic clocks that aim to operate below the standard quantum limit. Published by the American Physical Society2024more » « less
-
We investigate the quantum many-body dynamics of bosonic atoms hopping in a two-leg ladder with strong on-site contact interactions. We observe that when the atoms are prepared in a staggered pattern with pairs of atoms on every other rung, singlon defects, i.e., rungs with only one atom, can localize due to an emergent topological model, even though the underlying model in the absence of interactions admits only topologically trivial states. This emergent topological localization results from the formation of a zero-energy edge mode in an effective lattice formed by two adjacent chains with alternating strong and weak hoping links (Su-Schrieffer-Heeger chains) and opposite staggering which interface at the defect position. Our findings open the opportunity to dynamically generate nontrivial topological behaviors without the need for complex Hamiltonian engineering. Published by the American Physical Society2025more » « less
-
We simulate the dynamics of Rydberg atoms resonantly exchanging energy via two-, three-, and four-body dipole-dipole interactions in a one-dimensional array. Using simplified models of a realistic experimental system, we study the initial-state survival probability, mean level spacing, spread of entanglement, and properties of the energy eigenstates. By exploring a range of disorders and interaction strengths, we find regions in parameter space where the three- and four-body dynamics either fail to thermalize or do so slowly. The interplay between the stronger hopping and weaker field-tuned interactions gives rise to quantum many-body scar states, which play a critical role in slowing the dynamics of the three- and four-body interactions. Published by the American Physical Society2024more » « less
-
Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied, and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications. Published by the American Physical Society2024more » « less
An official website of the United States government

