skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cremona Orbits in P^4 and Applications
This article is motivated by the authors’ interest in the geometry of the Mori dream space P^4 blown up in 8 general points. In this article, we develop the necessary technique for determining Weyl orbits of linear cycles for the four-dimensional case, by explicit computations in the Chow ring of the resolution of the standard Cremona transformation. In particular, we close this paper with applications to the question of the dimension of the space of global sections of effective divisors having at most 8 points.  more » « less
Award ID(s):
2152130
PAR ID:
10514985
Author(s) / Creator(s):
;
Publisher / Repository:
Birkhauser, Springer
Date Published:
Journal Name:
Trends in Mathematics
ISSN:
2297-0215
ISBN:
978-3-031-11938-5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we study the spectral volume (SV) methods for scalar hyperbolic conservation laws with a class of subdivision points under the Petrov–Galerkin framework. Due to the strong connection between the DG method and the SV method with the appropriate choice of the subdivision points, it is natural to analyze the SV method in the Galerkin form and derive the analogous theoretical results as in the DG method. This article considers a class of SV methods, whose subdivision points are the zeros of a specific polynomial with a parameter in it. Properties of the piecewise constant functions under this subdivision, including the orthogonality between the trial solution space and test function space, are provided. With the aid of these properties, we are able to derive the energy stability, optimal a priori error estimates of SV methods with arbitrary high order accuracy. We also study the superconvergence of the numerical solution with the correction function technique, and show the order of superconvergence would be different with different choices of the subdivision points. In the numerical experiments, by choosing different parameters in the SV method, the theoretical findings are confirmed by the numerical results. 
    more » « less
  2. Abstract This article reports on an approach to point counting on algebraic varieties over finite fields that is based on a detailed investigation of the 2-adic orthogonal group. Combining the new approach with a p -adic method, we count the number of points on some K 3 surfaces over the field $$\mathbb {F}_{\!p}$$ F p , for all primes $$p < 10^8$$ p < 10 8 . 
    more » « less
  3. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    An eight-partition of a finite set of points (respectively, of a continuous mass distribution) in ℝ³ consists of three planes that divide the space into 8 octants, such that each open octant contains at most 1/8 of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in ℝ³ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in ℝ³ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of n points in ℝ³ (with prescribed normal direction of one of the planes) in time O^*(n^{5/2}). 
    more » « less
  4. Abstract It has long been conjectured that for nonlinear wave equations that satisfy a nonlinear form of the null condition, the low regularity well-posedness theory can be significantly improved compared to the sharp results of Smith-Tataru for the generic case. The aim of this article is to prove the first result in this direction, namely for the time-like minimal surface equation in the Minkowski space-time. Further, our improvement is substantial, namely by 3/8 derivatives in two space dimensions and by 1/4 derivatives in higher dimensions. 
    more » « less
  5. We define the Weyl cycles on X_n^ s , the blown-up projective space P^n in s points in general position. In particular, we focus on the Mori Dream spaces X3 7 and X4 8, where we classify all the Weyl cycles of codimension two. We further introduce the Weyl expected dimension for the space of global sections of any effective divisor that generalizes the linear expected dimension of [ 2] and the secant expected dimension of [ 4]. 
    more » « less