skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of a class of spectral volume methods for linear scalar hyperbolic conservation laws
Abstract In this article, we study the spectral volume (SV) methods for scalar hyperbolic conservation laws with a class of subdivision points under the Petrov–Galerkin framework. Due to the strong connection between the DG method and the SV method with the appropriate choice of the subdivision points, it is natural to analyze the SV method in the Galerkin form and derive the analogous theoretical results as in the DG method. This article considers a class of SV methods, whose subdivision points are the zeros of a specific polynomial with a parameter in it. Properties of the piecewise constant functions under this subdivision, including the orthogonality between the trial solution space and test function space, are provided. With the aid of these properties, we are able to derive the energy stability, optimal a priori error estimates of SV methods with arbitrary high order accuracy. We also study the superconvergence of the numerical solution with the correction function technique, and show the order of superconvergence would be different with different choices of the subdivision points. In the numerical experiments, by choosing different parameters in the SV method, the theoretical findings are confirmed by the numerical results.  more » « less
Award ID(s):
2309249
PAR ID:
10581280
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Numerical Methods for Partial Differential Equations
Volume:
40
Issue:
6
ISSN:
0749-159X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we study superconvergence properties of the ultraweak-local discontinuous Galerkin (UWLDG) method in Tao et al. [To appear in Math. Comput. DOI: https://doi.org/10.1090/mcom/3562 (2020).] for an one-dimensional linear fourth-order equation. With special initial discretizations, we prove the numerical solution of the semi-discrete UWLDG scheme superconverges to a special projection of the exact solution. The order of this superconvergence is proved to be k + min(3, k ) when piecewise ℙ k polynomials with k ≥ 2 are used. We also prove a 2 k -th order superconvergence rate for the cell averages and for the function values and derivatives of the UWLDG approximation at cell boundaries. Moreover, we prove superconvergence of ( k + 2)-th and ( k + 1)-th order of the function values and the first order derivatives of the UWLDG solution at a class of special quadrature points, respectively. Our proof is valid for arbitrary non-uniform regular meshes and for arbitrary k ≥ 2. Numerical experiments verify that all theoretical findings are sharp. 
    more » « less
  2. Abstract In this paper, we study the superconvergence of the semi-discrete discontinuous Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The asymptotic errors in cell averages, downwind point values, and the postprocessed solution are derived for the initial discretization by Gaussian projection (for periodic boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal.5, 2555–2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant in the superconvergence of order$$2k+1$$ 2 k + 1 for DG methods based on upwind-biased fluxes depends on the parity of the orderk. The asymptotic errors are demonstrated by various numerical experiments for scalar and vector hyperbolic equations. 
    more » « less
  3. Suppressing spurious oscillations is crucial for designing reliable high-order numerical schemes for hyperbolic conservation laws, yet it has been a challenge actively investigated over the past several decades. This paper proposes a novel, robust, and efficient oscillation-eliminating discontinuous Galerkin (OEDG) method on general meshes, motivated by the damping technique (see J. Lu, Y. Liu, and C. W. Shu [SIAM J. Numer. Anal. 59 (2021), pp. 1299–1324]). The OEDG method incorporates an oscillation-eliminating (OE) procedure after each Runge–Kutta stage, and it is devised by alternately evolving the conventional semidiscrete discontinuous Galerkin (DG) scheme and a damping equation. A novel damping operator is carefully designed to possess bothscale-invariantandevolution-invariantproperties. We rigorously prove the optimal error estimates of the fully discrete OEDG method for smooth solutions of linear scalar conservation laws. This might be the first generic fully discrete error estimate fornonlinearDG schemes with an automatic oscillation control mechanism. The OEDG method exhibits many notable advantages. It effectively eliminates spurious oscillations for challenging problems spanning various scales and wave speeds, without necessitating problem-specific parameters for all the tested cases. It also obviates the need for characteristic decomposition in hyperbolic systems. Furthermore, it retains the key properties of the conventional DG method, such as local conservation, optimal convergence rates, and superconvergence. Moreover, the OEDG method maintains stability under the normal Courant–Friedrichs–Lewy (CFL) condition, even in the presence of strong shocks associated with highly stiff damping terms. The OE procedure isnonintrusive, facilitating seamless integration into existing DG codes as an independent module. Its implementation is straightforward and efficient, involving only simple multiplications of modal coefficients by scalars. The OEDG approach provides new insights into the damping mechanism for oscillation control.It reveals the role of the damping operator as a modal filter, establishing close relations between the damping technique and spectral viscosity techniques.Extensive numerical results validate the theoretical analysis and confirm the effectiveness and advantages of the OEDG method. 
    more » « less
  4. Trefftz schemes are high-order Galerkin methods whose discrete spaces are made of elementwise exact solutions of the underlying partial differential equation (PDE). Trefftz basis functions can be easily computed for many PDEs that are linear, homogeneous and have piecewise-constant coefficients. However, if the equation has variable coefficients, exact solutions are generally unavailable. Quasi-Trefftz methods overcome this limitation relying on elementwise ‘approximate solutions’ of the PDE, in the sense of Taylor polynomials. We define polynomial quasi-Trefftz spaces for general linear PDEs with smooth coefficients and source term, describe their approximation properties and, under a nondegeneracy condition, provide a simple algorithm to compute a basis. We then focus on a quasi-Trefftz DG method for variable-coefficient elliptic diffusion–advection–reaction problems, showing stability and high-order convergence of the scheme. The main advantage over standard DG schemes is the higher accuracy for comparable numbers of degrees of freedom. For nonhomogeneous problems with piecewise-smooth source term we propose to construct a local quasi-Trefftz particular solution and then solve for the difference. Numerical experiments in two and three space dimensions show the excellent properties of the method both in diffusion-dominated and advection-dominated problems. 
    more » « less
  5. This article analyzes the effect of the penalty parameter used in  symmetric dual-wind discontinuous Galerkin (DWDG) methods for approximating second order elliptic partial differential equations (PDE).  DWDG methods follow from the DG differential calculus framework that defines discrete differential operators used to replace the continuous differential operators when discretizing a PDE. We establish the convergence of the DWDG approximation to a continuous Galerkin approximation as the penalty parameter tends towards infinity. We also test the influence of the regularity of the solution for elliptic second-order PDEs with regards to the relationship between the penalty parameter and the error for the DWDG approximation. Numerical experiments are provided to validate the theoretical results and to investigate the relationship between the penalty parameter and the L^2-error.For more information see https://ejde.math.txstate.edu/conf-proc/26/l1/abstr.html 
    more » « less