skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stomatal opening efficiency is controlled by cell wall organization in Arabidopsis thaliana
Abstract Stomatal function in plants is regulated by the nanoscale architecture of the cell wall and turgor pressure, which together control stomatal pore size to facilitate gas exchange and photosynthesis. The mechanical properties of the cell wall and cell geometry are critical determinants of stomatal dynamics. However, the specific biomechanical functions of wall constituents, for example, cellulose and pectins, and their impact on the work required to open or close the stomatal pore are unclear. Here, we use nanoindentation in normal and lateral directions, computational modeling, and microscopic imaging of cells from the model plant Arabidopsis thaliana to investigate the precise influences of wall architecture and turgor pressure on stomatal biomechanics. This approach allows us to quantify and compare the unique anisotropic properties of guard cells with normal composition, lower cellulose content, or alterations in pectin molecular weight. Using these data to calculate the work required to open the stomata reveals that the wild type, with a circumferential-to-longitudinal modulus ratio of 3:1, is the most energy-efficient of those studied. In addition, the tested genotypes displayed similar changes in their pore size despite large differences in wall thickness and biomechanical properties. These findings imply that homeostasis in stomatal function is maintained in the face of varying wall compositions and biomechanics by tuning wall thickness.  more » « less
Award ID(s):
2015943 2015947
PAR ID:
10514993
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Bayer, Edward
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
PNAS Nexus
Volume:
2
Issue:
9
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Stomata are pores at the leaf surface that enable gas exchange and transpiration. The signaling pathways that regulate the differentiation of stomatal guard cells and the mechanisms of stomatal pore formation have been characterized inArabidopsis thaliana. However, the process by which stomatal complexes develop after pore formation into fully mature complexes is poorly understood. We tracked the morphogenesis of young stomatal complexes over time to establish characteristic geometric milestones along the path of stomatal maturation. Using 3D‐nanoindentation coupled with finite element modeling of young and mature stomata, we found that despite having thicker cell walls than young guard cells, mature guard cells are more energy efficient with respect to stomatal opening, potentially attributable to the increased mechanical anisotropy of their cell walls and smaller changes in turgor pressure between the closed and open states. Comparing geometric changes in young and mature guard cells of wild‐type and cellulose‐deficient plants revealed that although cellulose is required for normal stomatal maturation, mechanical anisotropy appears to be achieved by the collective influence of cellulose and additional wall components. Together, these data elucidate the dynamic geometric and biomechanical mechanisms underlying the development process of stomatal maturation. 
    more » « less
  2. null (Ed.)
    Abstract Plant cell deformations are driven by cell pressurization and mechanical constraints imposed by the nanoscale architecture of the cell wall, but how these factors are controlled at the genetic and molecular levels to achieve different types of cell deformation is unclear. Here, we used stomatal guard cells to investigate the influences of wall mechanics and turgor pressure on cell deformation and demonstrate that the expression of the pectin-modifying gene PECTATE LYASE LIKE12 (PLL12) is required for normal stomatal dynamics in Arabidopsis thaliana. Using nanoindentation and finite element modeling to simultaneously measure wall modulus and turgor pressure, we found that both values undergo dynamic changes during induced stomatal opening and closure. PLL12 is required for guard cells to maintain normal wall modulus and turgor pressure during stomatal responses to light and to tune the levels of calcium cross-linked pectin in guard cell walls. Guard cell-specific knockdown of PLL12 caused defects in stomatal responses and reduced leaf growth, which were associated with lower cell proliferation but normal cell expansion. Together, these results force us to revise our view of how wall-modifying genes modulate wall mechanics and cell pressurization to accomplish the dynamic cellular deformations that underlie stomatal function and tissue growth in plants. 
    more » « less
  3. Zhu, Xin-Guang (Ed.)
    Abstract Stomata are dynamic pores on plant surfaces that regulate photosynthesis and are thus of critical importance for understanding and leveraging the carbon-capturing and food-producing capabilities of plants. However, our understanding of the molecular underpinnings of stomatal kinetics and the biomechanical properties of the cell walls of stomatal guard cells that enable their dynamic responses to environmental and intrinsic stimuli is limited. Here, we built multiscale models that simulate regions of the guard cell wall, representing cellulose fibrils and matrix polysaccharides as discrete, interacting units, and used these models to help explain how molecular changes in wall composition and underlying architecture alter guard wall biomechanics that gives rise to stomatal responses in mutants with altered wall synthesis and modification. These results point to strategies for engineering guard cell walls to enhance stomatal response times and efficiency. 
    more » « less
  4. Abstract Mechanical properties, size and geometry of cells, and internal turgor pressure greatly influence cell morphogenesis. Computational models of cell growth require values for wall elastic modulus and turgor pressure, but very few experiments have been designed to validate the results using measurements that deform the entire thickness of the cell wall. New wall material is synthesized at the inner surface of the cell such that full-thickness deformations are needed to quantify relevant changes associated with cell development. Here, we present an integrated, experimental–computational approach to analyze quantitatively the variation of elastic bending behavior in the primary cell wall of living Arabidopsis (Arabidopsis thaliana) pavement cells and to measure turgor pressure within cells under different osmotic conditions. This approach used laser scanning confocal microscopy to measure the 3D geometry of single pavement cells and indentation experiments to probe the local mechanical responses across the periclinal wall. The experimental results were matched iteratively using a finite element model of the experiment to determine the local mechanical properties and turgor pressure. The resulting modulus distribution along the periclinal wall was nonuniform across the leaf cells studied. These results were consistent with the characteristics of plant cell walls which have a heterogeneous organization. The results and model allowed the magnitude and orientation of cell wall stress to be predicted quantitatively. The methods also serve as a reference for future work to analyze the morphogenetic behaviors of plant cells in terms of the heterogeneity and anisotropy of cell walls. 
    more » « less
  5. Abstract The ability of plants to absorb CO 2 for photosynthesis and transport water from root to shoot depends on the reversible swelling of guard cells that open stomatal pores in the epidermis. Despite decades of experimental and theoretical work, the biomechanical drivers of stomatal opening and closure are still not clearly defined. We combined mechanical principles with a growing body of knowledge concerning water flux across the plant cell membrane and the biomechanical properties of plant cell walls to quantitatively test the long-standing hypothesis that increasing turgor pressure resulting from water uptake drives guard cell expansion during stomatal opening. To test the alternative hypothesis that water influx is the main motive force underlying guard cell expansion, we developed a system dynamics model accounting for water influx. This approach connects stomatal kinetics to whole plant physiology by including values for water flux arising from water status in the plant . 
    more » « less