skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 13, 2025

Title: The impact of middle school students’ writing quality on the accuracy of the automated assessment of science content
Helping students learn how to write is essential. However, students have few opportunities to develop this skill, since giving timely feedback is difficult for teachers. AI applications can provide quick feedback on students’ writing. But, ensuring accurate assessment can be challenging, since students’ writing quality can vary. We examined the impact of students’ writing quality on the error rate of our natural language processing (NLP) system when assessing scientific content in initial and revised design essays. We also explored whether aspects of writing quality were linked to the number of NLP errors. Despite finding that students’ revised essays were significantly different from their initial essays in a few ways, our NLP systems’ accuracy was similar. Further, our multiple regression analyses showed, overall, that students’ writing quality did not impact our NLP systems’ accuracy. This is promising in terms of ensuring students with different writing skills get similarly accurate feedback.  more » « less
Award ID(s):
2010483
PAR ID:
10515213
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Hoadley, C; Wang, XC
Publisher / Repository:
International Society for the Learning Sciences
Date Published:
Journal Name:
Proceedings of the 4th Annual Meeting of the International Society of the Learning Sciences 2024
Format(s):
Medium: X
Location:
Buffalo, NY
Sponsoring Org:
National Science Foundation
More Like this
  1. The present study examined the extent to which adaptive feedback and just-in-time writing strategy instruction improved the quality of high school students’ persuasive essays in the context of the Writing Pal (W-Pal). W-Pal is a technology-based writing tool that integrates automated writing evaluation into an intelligent tutoring system. Students wrote a pretest essay, engaged with W-Pal’s adaptive instruction over the course of four training sessions, and then completed a posttest essay. For each training session, W-Pal differentiated strategy instruction for each student based on specific weaknesses in the initial training essays prior to providing the opportunity to revise. The results indicated that essay quality improved overall from pretest to posttest with respect to holistic quality, as well as several specific dimensions of essay quality, particularly for students with lower literacy skills. Moreover, students’ scores on some of the training essays improved from the initial to revised version on the dimensions of essay quality that were targeted by instruction, whereas scores did not improve on the dimensions that were not targeted by instruction. Overall, the results suggest that W-Pal’s adaptive strategy instruction can improve the quality of students’ essays overall, as well as more specific dimensions of essay quality. 
    more » « less
  2. Hoadley, C; Wang, XC (Ed.)
    Eighth grade students received automated feedback from PyrEval - an NLP tool - about their science essays. We examined essay quality change when revised. Regardless of prior physics knowledge, essay quality improved. Grounded in literature on AI explainability and trust in automated feedback, we also examined which PyrEval explanation predicted essay quality change. Essay quality improvement was predicted by high- and medium-accuracy feedback. 
    more » « less
  3. Writing scientific explanations is a core practice in science. However, students find it difficult to write coherent scientific explanations. Additionally, teachers find it challenging to provide real-time feedback on students’ essays. In this study, we discuss how PyrEval, an NLP technology, was used to automatically assess students’ essays and provide feedback. We found that students explained more key ideas in their essays after the automated assessment and feedback. However, there were issues with the automated assessments as well as students’ understanding of the feedback and revising their essays. 
    more » « less
  4. The ability to revise in response to feedback is critical to students' writing success. In the case of argument writing in specific, identifying whether an argument revision (AR) is successful or not is a complex problem because AR quality is dependent on the overall content of an argument. For example, adding the same evidence sentence could strengthen or weaken existing claims in different argument contexts (ACs). To address this issue we developed Chain-of-Thought prompts to facilitate ChatGPT-generated ACs for AR quality predictions. The experiments on two corpora, our annotated elementary essays and existing college essays benchmark, demonstrate the superiority of the proposed ACs over baselines. 
    more » « less
  5. Automated writing evaluation (AWE) systems automatically assess and provide students with feedback on their writing. Despite learning benefits, students may not effectively interpret and utilize AI-generated feedback, thereby not maximizing their learning outcomes. A closely related issue is the accuracy of the systems, that students may not understand, are not perfect. Our study investigates whether students differentially addressed false positive and false negative AI-generated feedback errors on their science essays. We found that students addressed nearly all the false negative feedback; however, they addressed less than one-fourth of the false positive feedback. The odds of addressing a false positive feedback was 99% lower than addressing a false negative feedback, representing significant missed opportunities for revision and learning. We discuss the implications of these findings in the context of students’ learning. 
    more » « less