skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wave optics of imaging with contact ball lenses
Abstract Recent progress in microspherical superlens nanoscopy raises a fundamental question about the transition from super-resolution properties of mesoscale microspheres, which can provide a subwavelength resolution$$\sim \lambda /7$$ λ / 7 , to macroscale ball lenses, for which the imaging quality degrades because of aberrations. To address this question, this work develops a theory describing the imaging by contact ball lenses with diameters$$30 30 < D / λ < 4000 covering this transition range and for a broad range of refractive indices$$1.3<2.1$$ 1.3 < n < 2.1 . Starting from geometrical optics we subsequently proceed to an exact numerical solution of the Maxwell equations explaining virtual and real image formation as well as magnificationMand resolution near the critical index$$n\approx 2$$ n 2 which is of interest for applications demanding the highestMsuch as cellphone microscopy. The wave effects manifest themselves in a strong dependence of the image plane position and magnification on$$D/\lambda $$ D / λ , for which a simple analytical formula is derived. It is demonstrated that a subwavelength resolution is achievable at$$D/\lambda \lesssim 1400$$ D / λ 1400 . The theory explains the results of experimental contact-ball imaging. The understanding of the physical mechanisms of image formation revealed in this study creates a basis for developing applications of contact ball lenses in cellphone-based microscopy.  more » « less
Award ID(s):
2052745
PAR ID:
10515292
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce the immersion poset$$({\mathcal {P}}(n), \leqslant _I)$$ ( P ( n ) , I ) on partitions, defined by$$\lambda \leqslant _I \mu $$ λ I μ if and only if$$s_\mu (x_1, \ldots , x_N) - s_\lambda (x_1, \ldots , x_N)$$ s μ ( x 1 , , x N ) - s λ ( x 1 , , x N ) is monomial-positive. Relations in the immersion poset determine when irreducible polynomial representations of$$GL_N({\mathbb {C}})$$ G L N ( C ) form an immersion pair, as defined by Prasad and Raghunathan [7]. We develop injections$$\textsf{SSYT}(\lambda , \nu ) \hookrightarrow \textsf{SSYT}(\mu , \nu )$$ SSYT ( λ , ν ) SSYT ( μ , ν ) on semistandard Young tableaux given constraints on the shape of$$\lambda $$ λ , and present results on immersion relations among hook and two column partitions. The standard immersion poset$$({\mathcal {P}}(n), \leqslant _{std})$$ ( P ( n ) , std ) is a refinement of the immersion poset, defined by$$\lambda \leqslant _{std} \mu $$ λ std μ if and only if$$\lambda \leqslant _D \mu $$ λ D μ in dominance order and$$f^\lambda \leqslant f^\mu $$ f λ f μ , where$$f^\nu $$ f ν is the number of standard Young tableaux of shape$$\nu $$ ν . We classify maximal elements of certain shapes in the standard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power sum symmetric functions on conjectured lower intervals in the immersion poset, addressing questions posed by Sundaram [12]. 
    more » « less
  2. Abstract Let$$\lambda $$ λ denote the Liouville function. We show that the logarithmic mean of$$\lambda (\lfloor \alpha _1n\rfloor )\lambda (\lfloor \alpha _2n\rfloor )$$ λ ( α 1 n ) λ ( α 2 n ) is 0 whenever$$\alpha _1,\alpha _2$$ α 1 , α 2 are positive reals with$$\alpha _1/\alpha _2$$ α 1 / α 2 irrational. We also show that for$$k\geqslant 3$$ k 3 the logarithmic mean of$$\lambda (\lfloor \alpha _1n\rfloor )\cdots \lambda (\lfloor \alpha _kn\rfloor )$$ λ ( α 1 n ) λ ( α k n ) has some nontrivial amount of cancellation, under certain rational independence assumptions on the real numbers$$\alpha _i.$$ α i . Our results for the Liouville function generalise to produce independence statements for general bounded real-valued multiplicative functions evaluated at Beatty sequences. These results answer the two-point case of a conjecture of Frantzikinakis (and provide some progress on the higher order cases), generalising a recent result of Crnčević–Hernández–Rizk–Sereesuchart–Tao. As an ingredient in our proofs, we establish bounds for the logarithmic correlations of the Liouville function along Bohr sets. 
    more » « less
  3. Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ U 0 over locally confined (width$$L$$ L ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ D / λ > 1 in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ F 2 λ / L 1 ) limit, where$$\lambda = U_{0}^{2} /g$$ λ = U 0 2 / g is the lengthscale of radiating gravity waves and$$D$$ D is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ F , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity. 
    more » « less
  4. Abstract We obtain new optimal estimates for the$$L^{2}(M)\to L^{q}(M)$$ L 2 ( M ) L q ( M ) ,$$q\in (2,q_{c}]$$ q ( 2 , q c ] ,$$q_{c}=2(n+1)/(n-1)$$ q c = 2 ( n + 1 ) / ( n 1 ) , operator norms of spectral projection operators associated with spectral windows$$[\lambda ,\lambda +\delta (\lambda )]$$ [ λ , λ + δ ( λ ) ] , with$$\delta (\lambda )=O((\log \lambda )^{-1})$$ δ ( λ ) = O ( ( log λ ) 1 ) on compact Riemannian manifolds$$(M,g)$$ ( M , g ) of dimension$$n\ge 2$$ n 2 all of whose sectional curvatures are nonpositive or negative. We show that these two different types of estimates are saturated on flat manifolds or manifolds all of whose sectional curvatures are negative. This allows us to classify compact space forms in terms of the size of$$L^{q}$$ L q -norms of quasimodes for each Lebesgue exponent$$q\in (2,q_{c}]$$ q ( 2 , q c ] , even though it is impossible to distinguish between ones of negative or zero curvature sectional curvature for any$$q>q_{c}$$ q > q c
    more » « less
  5. Abstract Using proton–proton collision data corresponding to an integrated luminosity of$$140\hbox { fb}^{-1}$$ 140 fb - 1 collected by the CMS experiment at$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V , the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$ Λ b 0 J / ψ Ξ - K + decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$ Λ b 0 ψ ( 2 S ) Λ decay, is measured to be$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$ B ( Λ b 0 J / ψ Ξ - K + ) / B ( Λ b 0 ψ ( 2 S ) Λ ) = [ 3.38 ± 1.02 ± 0.61 ± 0.03 ] % , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$ B ( ψ ( 2 S ) J / ψ π + π - ) and$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$ B ( Ξ - Λ π - )
    more » « less