skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 6, 2025

Title: Measure-Theoretic Reeb Graphs and Reeb Spaces
A Reeb graph is a graphical representation of a scalar function on a topological space that encodes the topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multiparameter function. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that incorporate the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs and Reeb spaces when the domain or the range is modeled as a metric measure space (i.e., a metric space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph and Reeb space in representing the topological features of a scalar field while accounting for the distribution of the measure. We first introduce a Reeb graph with local smoothing and prove its stability with respect to the interleaving distance. We then prove the stability of a Reeb graph of a metric measure space with respect to the measure, defined using the distance to a measure or the kernel distance to a measure, respectively.  more » « less
Award ID(s):
2145499 2301361 1910733
PAR ID:
10515293
Author(s) / Creator(s):
; ; ;
Editor(s):
Mulzer, Wolfgang; Phillips, Jeff M
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
40th International Symposium on Computational Geometry (SoCG 2024), Leibniz International Proceedings in Informatics (LIPIcs)
Volume:
293
ISSN:
978-3-95977-316-4
ISBN:
978-3-95977-316-4
Page Range / eLocation ID:
80:1-80:18
Subject(s) / Keyword(s):
Reeb graph Reeb space metric measure space topological data analysis theory of computation design and analysis of algorithms mathematics of computing topology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    Given a map f:X → M from a topological space X to a metric space M, a decorated Reeb space consists of the Reeb space, together with an attribution function whose values recover geometric information lost during the construction of the Reeb space. For example, when M = ℝ is the real line, the Reeb space is the well-known Reeb graph, and the attributions may consist of persistence diagrams summarizing the level set topology of f. In this paper, we introduce decorated Reeb spaces in various flavors and prove that our constructions are Gromov-Hausdorff stable. We also provide results on approximating decorated Reeb spaces from finite samples and leverage these to develop a computational framework for applying these constructions to point cloud data. 
    more » « less
  2. null (Ed.)
    The Reeb graph of a scalar function that is defined on a domain gives a topologically meaningful summary of that domain. Reeb graphs have been shown in the past decade to be of great importance in geometric processing, image processing, computer graphics, and computational topology. The demand for analyzing large data sets has increased in the last decade. Hence, the parallelization of topological computations needs to be more fully considered. We propose a parallel augmented Reeb graph algorithm on triangulated meshes with and without a boundary. That is, in addition to our parallel algorithm for computing a Reeb graph, we describe a method for extracting the original manifold data from the Reeb graph structure. We demonstrate the running time of our algorithm on standard datasets. As an application, we show how our algorithm can be utilized in mesh segmentation algorithms. 
    more » « less
  3. Buchin, Kevin ; Colin de Verdi\` (Ed.)
    In this paper, we introduce an extension of smoothing on Reeb graphs, which we call truncated smoothing; this in turn allows us to define a new family of metrics which generalize the interleaving distance for Reeb graphs. Intuitively, we "chop off" parts near local minima and maxima during the course of smoothing, where the amount cut is controlled by a parameter τ. After formalizing truncation as a functor, we show that when applied after the smoothing functor, this prevents extensive expansion of the range of the function, and yields particularly nice properties (such as maintaining connectivity) when combined with smoothing for 0 ≤ τ ≤ 2ε, where ε is the smoothing parameter. Then, for the restriction of τ ∈ [0,ε], we have additional structure which we can take advantage of to construct a categorical flow for any choice of slope m ∈ [0,1]. Using the infrastructure built for a category with a flow, this then gives an interleaving distance for every m ∈ [0,1], which is a generalization of the original interleaving distance, which is the case m = 0. While the resulting metrics are not stable, we show that any pair of these for m, m' ∈ [0,1) are strongly equivalent metrics, which in turn gives stability of each metric up to a multiplicative constant. We conclude by discussing implications of this metric within the broader family of metrics for Reeb graphs. 
    more » « less
  4. The Frechet distance is often used to measure distances between paths, with applications in areas ranging from map matching to GPS trajectory analysis to hand- writing recognition. More recently, the Frechet distance has been generalized to a distance between two copies of the same graph embedded or immersed in a metric space; this more general setting opens up a wide range of more complex applications in graph analysis. In this paper, we initiate a study of some of the fundamental topological properties of spaces of paths and of graphs mapped to R^n under the Frechet distance, in an effort to lay the theoretical groundwork for understanding how these distances can be used in practice. In particular, we prove whether or not these spaces, and the metric balls therein, are path-connected. 
    more » « less
  5. The Fréchet distance is often used to measure distances between paths, with applications in areas ranging from map matching to GPS trajectory analysis to hand- writing recognition. More recently, the Fréchet distance has been generalized to a distance between two copies of the same graph embedded or immersed in a metric space; this more general setting opens up a wide range of more complex applications in graph analysis. In this paper, we initiate a study of some of the fundamental topological properties of spaces of paths and of graphs mapped to R^n under the Fréchet distance, in an eort to lay the theoretical groundwork for understanding how these distances can be used in practice. In particular, we prove whether or not these spaces, and the metric balls therein, are path-connected. 
    more » « less