Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge, we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next, we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and examine our model's generalizability across various datasets. Our experimental analysis demonstrates our approach's superiority in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than 100x on the benchmark datasets while maintaining an error rate below 0.1%.
more »
« less
Sketching Merge Trees for Scientific Visualization
Merge trees are a type of topological descriptors that record the connectivity among the sublevel sets of scalar fields. They are among the most widely used topological tools in visualization. In this paper, we are interested in sketching a set of merge trees using techniques from matrix sketching. That is, given a large set T of merge trees, we would like to find a much smaller set of basis trees S such that each tree in T can be approximately reconstructed from a linear combination of merge trees in S. A set of high-dimensional vectors can be approximated via matrix sketching techniques such as principal component analysis and column subset selection. However, until now, there has not been any work on sketching a set of merge trees. We develop a framework for sketching a set of merge trees that combines matrix sketching with tools from optimal transport. In particular, we vectorize a set of merge trees into high-dimensional vectors while preserving their structures and structural relations. We demonstrate the applications of our framework in sketching merge trees that arise from time-varying scientific simulations. Specifically, our framework obtains a set of basis trees as representatives that capture the “modes” of physical phenomena for downstream analysis and visualization.
more »
« less
- Award ID(s):
- 2145499
- PAR ID:
- 10515319
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 2023 Topological Data Analysis and Visualization (TopoInVis)
- ISBN:
- 979-8-3503-2964-3
- Page Range / eLocation ID:
- 61-71
- Subject(s) / Keyword(s):
- Merge trees matrix sketching topology in visualization ensemble analysis
- Format(s):
- Medium: X
- Location:
- Melbourne, Australia
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given a matrix A ∈ ℝn\texttimes{}d and a vector b ∈ ℝn, we consider the regression problem with ℓ∞ guarantees: finding a vector x′ ∈ ℝd such that $$||x'-x^* ||_infty leq frac{epsilon}{sqrt{d}}cdot ||Ax^*-b||_2cdot ||A^dagger||$$, where x* = arg minx∈Rd ||Ax – b||2. One popular approach for solving such ℓ2 regression problem is via sketching: picking a structured random matrix S ∈ ℝm\texttimes{}n with m < n and S A can be quickly computed, solve the "sketched" regression problem arg minx∈ℝd ||S Ax – Sb||2. In this paper, we show that in order to obtain such ℓ∞ guarantee for ℓ2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m = ε-2d log3(n/δ) such that solving the sketched regression problem gives the ℓ∞ guarantee, with probability at least 1 – δ. Moreover, the matrix S A can be computed in time O(nd log n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in (Price et al., 2017), in which a superlinear in d rows, m = Ω(ε-2d1+γ) for γ ∈ (0, 1) is required. Moreover, we develop a novel analytical framework for ℓ∞ guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in (Song \& Yu, 2021). Our analysis is much simpler and more general than that of (Price et al., 2017). Leveraging this framework, we extend the ℓ∞ guarantee regression result to dense sketching matrices for computing the fast tensor product of vectors.more » « less
-
Determinant maximization problem gives a general framework that models problems arising in as diverse fields as statistics [Puk06], convex geometry [Kha96], fair allocations [AGSS16], combinatorics [AGV18], spectral graph theory [NST19a], network design, and random processes [KT12]. In an instance of a determinant maximization problem, we are given a collection of vectors U = {v1, . . . , vn} ⊂ Rd , and a goal is to pick a subset S ⊆ U of given vectors to maximize the determinant of the matrix ∑i∈S vivi^T. Often, the set S of picked vectors must satisfy additional combinatorial constraints such as cardinality constraint (|S| ≤ k) or matroid constraint (S is a basis of a matroid defined on the vectors). In this paper, we give a polynomial-time deterministic algorithm that returns a r O(r)-approximation for any matroid of rank r ≤ d. This improves previous results that give e O(r^2)-approximation algorithms relying on e^O(r)-approximate estimation algorithms [NS16, AG17,AGV18, MNST20] for any r ≤ d. All previous results use convex relaxations and their relationship to stable polynomials and strongly log-concave polynomials. In contrast, our algorithm builds on combinatorial algorithms for matroid intersection, which iteratively improve any solution by finding an alternating negative cycle in the exchange graph defined by the matroids. While the det(.) function is not linear, we show that taking appropriate linear approximations at each iteration suffice to give the improved approximation algorithm.more » « less
-
null (Ed.)Building a sketch of an n-by-n empirical kernel matrix is a common approach to accelerate the computation of many kernel methods. In this paper, we propose a unified framework of constructing sketching methods in kernel ridge regression (KRR), which views the sketching matrix S as an accumulation of m rescaled sub-sampling matrices with independent columns. Our framework incorporates two commonly used sketching methods, sub-sampling sketches (known as the Nyström method) and sub-Gaussian sketches, as special cases with m=1 and m=infinity respectively. Under the new framework, we provide a unified error analysis of sketching approximation and show that our accumulation scheme improves the low accuracy of sub-sampling sketches when certain incoherence characteristic is high, and accelerates the more accurate but computationally heavier sub-Gaussian sketches. By optimally choosing the number m of accumulations, we show that a best trade-off between computational efficiency and statistical accuracy can be achieved. In practice, the sketching method can be as efficiently implemented as the sub-sampling sketches, as only minor extra matrix additions are needed. Our empirical evaluations also demonstrate that the proposed method may attain the accuracy close to sub-Gaussian sketches, while is as efficient as sub-sampling-based sketches.more » « less
-
We propose a joint dictionary learning framework that couples imaging and genetics data in a low dimensional subspace as guided by clinical diagnosis. We use a graph regularization penalty to simultaneously capture inter-regional brain interactions and identify the representative set anatomical basis vectors that span the low dimensional space. We further employ group sparsity to find the representative set of genetic basis vectors that span the same latent space. Finally, the latent projection is used to classify patients versus controls. We have evaluated our model on two task fMRI paradigms and single nucleotide polymorphism (SNP) data from schizophrenic patients and matched neurotypical controls. We employ a ten fold cross validation technique to show the predictive power of our model. We compare our model with canonical correlation analysis of imaging and genetics data and random forest classification. Our approach shows better prediction accuracy on both task datasets. Moreover, the implicated brain regions and genetic variants underlie the well documented deficits in schizophrenia.more » « less
An official website of the United States government

