skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Accumulations of Projections—A Unified Framework for Random Sketches in Kernel Ridge Regression
Building a sketch of an n-by-n empirical kernel matrix is a common approach to accelerate the computation of many kernel methods. In this paper, we propose a unified framework of constructing sketching methods in kernel ridge regression (KRR), which views the sketching matrix S as an accumulation of m rescaled sub-sampling matrices with independent columns. Our framework incorporates two commonly used sketching methods, sub-sampling sketches (known as the Nyström method) and sub-Gaussian sketches, as special cases with m=1 and m=infinity respectively. Under the new framework, we provide a unified error analysis of sketching approximation and show that our accumulation scheme improves the low accuracy of sub-sampling sketches when certain incoherence characteristic is high, and accelerates the more accurate but computationally heavier sub-Gaussian sketches. By optimally choosing the number m of accumulations, we show that a best trade-off between computational efficiency and statistical accuracy can be achieved. In practice, the sketching method can be as efficiently implemented as the sub-sampling sketches, as only minor extra matrix additions are needed. Our empirical evaluations also demonstrate that the proposed method may attain the accuracy close to sub-Gaussian sketches, while is as efficient as sub-sampling-based sketches.  more » « less
Award ID(s):
1907316
PAR ID:
10302079
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
130
ISSN:
2640-3498
Page Range / eLocation ID:
2953-2961
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nyström approximation is a fast randomized method that rapidly solves kernel ridge regression (KRR) problems through sub-sampling the n-by-n empirical kernel matrix appearing in the objective function. However, the performance of such a sub-sampling method heavily relies on correctly estimating the statistical leverage scores for forming the sampling distribution, which can be as costly as solving the original KRR. In this work, we propose a linear time (modulo poly-log terms) algorithm to accurately approximate the statistical leverage scores in the stationary-kernel-based KRR with theoretical guarantees. Particularly, by analyzing the first-order condition of the KRR objective, we derive an analytic formula, which depends on both the input distribution and the spectral density of stationary kernels, for capturing the non-uniformity of the statistical leverage scores. Numerical experiments demonstrate that with the same prediction accuracy our method is orders of magnitude more efficient than existing methods in selecting the representative sub-samples in the Nyström approximation. 
    more » « less
  2. Software switches are emerging as a vital measurement vantage point in many networked systems. Sketching algorithms or sketches, provide high-fidelity approximate measurements, and appear as a promising alternative to traditional approaches such as packet sampling. However, sketches incur significant computation overhead in software switches. Existing efforts in implementing sketches in virtual switches make sacrifices on one or more of the following dimensions: performance (handling 40 Gbps line-rate packet throughput with low CPU footprint), robustness (accuracy guarantees across diverse workloads), and generality (supporting various measurement tasks). In this work, we present the design and implementation of NitroSketch, a sketching framework that systematically addresses the performance bottlenecks of sketches without sacrificing robustness and generality. Our key contribution is the careful synthesis of rigorous, yet practical solutions to reduce the number of per-packet CPU and memory operations. We implement NitroSketch on three popular software platforms (Open vSwitch-DPDK, FD.io-VPP, and BESS) and evaluate the performance. We show that accuracy is comparable to unmodified sketches while attaining up to two orders of magnitude speedup, and up to 45% reduction in CPU usage. 
    more » « less
  3. We initiate a systematic study of linear sketching over $\ftwo$. For a given Boolean function treated as $f \colon \ftwo^n \to \ftwo$ a randomized $\ftwo$-sketch is a distribution $\mathcal M$ over $d \times n$ matrices with elements over $\ftwo$ such that $\mathcal Mx$ suffices for computing $f(x)$ with high probability. Such sketches for $d \ll n$ can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between $\ftwo$-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that $\ftwo$-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree $\ftwo$-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that $\ftwo$-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over $\ftwo$ can be constructed as $\ftwo$-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC'14) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require the stream length to be triply exponential in $n$ and holds for streams of length $\tilde O(n)$ constructed through uniformly random updates. 
    more » « less
  4. We initiate a systematic study of linear sketching over F_2. For a given Boolean function treated as f : F_2^n -> F_2 a randomized F_2-sketch is a distribution M over d x n matrices with elements over F_2 such that Mx suffices for computing f(x) with high probability. Such sketches for d << n can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between F_2-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that F_2-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree F_2-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that F_2-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over F_2 can be constructed as F_2-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC'14) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require the stream length to be triply exponential in n and holds for streams of length O(n) constructed through uniformly random updates. 
    more » « less
  5. We propose a new randomized optimization method for high-dimensional problems which can be seen as a generalization of coordinate descent to random subspaces. We show that an adaptive sampling strategy for the random subspace significantly outperforms the oblivious sampling method, which is the common choice in the recent literature. The adaptive subspace can be efficiently generated by a correlated random matrix ensemble whose statistics mimic the input data. We prove that the improvement in the relative error of the solution can be tightly characterized in terms of the spectrum of the data matrix, and provide probabilistic upper-bounds. We then illustrate the consequences of our theory with data matrices of different spectral decay. Extensive experimental results show that the proposed approach offers significant speed ups in machine learning problems including logistic regression, kernel classification with random convolution layers and shallow neural networks with rectified linear units. Our analysis is based on convex analysis and Fenchel duality, and establishes connections to sketching and randomized matrix decompositions. 
    more » « less