skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How do people build up visual memory representations from sensory evidence? Revisiting two classic models of choice
In many decision tasks, we have a set of alternative choices and are faced with the problem of how to use our latent beliefs and preferences about each alternative to make a single choice. Cognitive and decision models typically presume that beliefs and preferences are distilled to a scalar latent strength for each alternative, but it is also critical to model how people use these latent strengths to choose a single alternative. Most models follow one of two traditions to establish this link. Modern psychophysics and memory researchers make use of signal detection theory, assuming that latent strengths are perturbed by noise, and the highest resulting signal is selected. By contrast, many modern decision theoretic modeling and machine learning approaches use the softmax function (which is based on Luce’s choice axiom; Luce, 1959) to give some weight to non-maximal-strength alternatives. Despite the prominence of these two theories of choice, current approaches rarely address the connection between them, and the choice of one or the other appears more motivated by the tradition in the relevant literature than by theoretical or empirical reasons to prefer one theory to the other. The goal of the current work is to revisit this topic by elucidating which of these two models provides a better characterization of latent processes in -alternative decision tasks, with a particular focus on memory tasks. In a set of visual memory experiments, we show that, within the same experimental design, the softmax parameter varies across -alternatives, whereas the parameter of the signal-detection model is stable. Together, our findings indicate that replacing softmax with signal-detection link models would yield more generalizable predictions across changes in task structure. More ambitiously, the invariance of signal detection model parameters across different tasks suggests that the parametric assumptions of these models may be more than just a mathematical convenience, but reflect something real about human decision-making.  more » « less
Award ID(s):
2146988
PAR ID:
10515338
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Mathematical Psychology
Volume:
117
Issue:
C
ISSN:
0022-2496
Page Range / eLocation ID:
102805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Revealed preference is the dominant approach for inferring preferences, but it is limited in that it relies solely on discrete choice data. When a person chooses one alternative over another, we cannot infer the strength of their preference or predict how likely they will be to make the same choice again. However, the choice process also produces response times (RTs), which are continuous and easily observable. It has been shown that RTs often decrease with strength-of-preference. This is a basic property of sequential sampling models such as the drift diffusion model. What remains unclear is whether this relationship is sufficiently strong, relative to the other factors that affect RTs, to allow us to reliably infer strength-of-preference across individuals. Using several experiments, we show that even when every subject chooses the same alternative, we can still rank them based on their RTs and predict their behavior on other choice problems. We can also use RTs to predict whether a subject will repeat or reverse their decision when presented with the same choice problem a second time. Finally, as a proof-of-concept, we demonstrate that it is also possible to recover individual preference parameters from RTs alone. These results demonstrate that it is indeed possible to use RTs to infer preferences. 
    more » « less
  2. null (Ed.)
    There are many ways to measure how people manage risk when they make decisions. A standard approach is to measure risk propensity using self-report questionnaires. An alternative approach is to use decision-making tasks that involve risk and uncertainty, and apply cognitive models of task behavior to infer parameters that measure people's risk propensity. We report the results of a within-participants experiment that used three questionnaires and four decision-making tasks. The questionnaires are the Risk Propensity Scale, the Risk Taking Index, and the Domain Specific Risk Taking Scale. The decision-making tasks are the Balloon Analogue Risk Task, the preferential choice gambling task, the optimal stopping problem, and the bandit problem. We analyze the relationships between the risk measures and cognitive parameters using Bayesian inferences about the patterns of correlation, and using a novel cognitive latent variable modeling approach. The results show that people's risk propensity is generally consistent within different conditions for each of the decision-making tasks. There is, however, little evidence that the way people manage risk generalizes across the tasks, or that it corresponds to the questionnaire measures. 
    more » « less
  3. Abstract Student’s shift of attention away from a current learning task to task-unrelated thought, also called mind wandering, occurs about 30% of the time spent on education-related activities. Its frequent occurrence has a negative effect on learning outcomes across learning tasks. Automated detection of mind wandering might offer an opportunity to assess the attentional state continuously and non-intrusively over time and hence enable large-scale research on learning materials and responding to inattention with targeted interventions. To achieve this, an accessible detection approach that performs well for various systems and settings is required. In this work, we explore a new, generalizable approach to video-based mind wandering detection that can be transferred to naturalistic settings across learning tasks. Therefore, we leverage two datasets, consisting of facial videos during reading in the lab (N = 135) and lecture viewing in-the-wild (N = 15). When predicting mind wandering, deep neural networks (DNN) and long short-term memory networks (LSTMs) achieve F$$_{1}$$ 1 scores of 0.44 (AUC-PR = 0.40) and 0.459 (AUC-PR = 0.39), above chance level, with latent features based on transfer-learning on the lab data. When exploring generalizability by training on the lab dataset and predicting on the in-the-wild dataset, BiLSTMs on latent features perform comparably to the state-of-the-art with an F$$_{1}$$ 1 score of 0.352 (AUC-PR = 0.26). Moreover, we investigate the fairness of predictive models across gender and show based on post-hoc explainability methods that employed latent features mainly encode information on eye and mouth areas. We discuss the benefits of generalizability and possible applications. 
    more » « less
  4. Traditional training algorithms for Gumbel Softmax Variational Autoencoders (GS-VAEs) typically rely on an annealing scheme that gradually reduces the Softmax temperature τ according to a given function. This approach can lead to suboptimal results. To improve the performance, we propose a parallel framework for GS-VAEs, which embraces dual latent layers and multiple sub-models with diverse temperature strategies. Instead of relying on a fixed function for adjusting τ, our training algorithm uses loss difference as performance feedback to dynamically update each sub-model’s temperature τ, which is inspired by the need to balance exploration and exploitation in learning. By combining diversity in temperature strategies with the performance-based tuning method, our design helps prevent sub-models from becoming trapped in local optima and finds the GS-VAE model that best fits the given dataset. In experiments using four classic image datasets, our model significantly surpasses a standard GS-VAE that employs a temperature annealing scheme across multiple tasks, including data reconstruction, generalization capabilities, anomaly detection, and adversarial robustness. Our implementation is publicly available at https://github.com/wxzg7045/Gumbel-Softmax-VAE-2024/tree/main. 
    more » « less
  5. Deep neural networks (DNNs) have started to find their role in the modern healthcare system. DNNs are being developed for diagnosis, prognosis, treatment planning, and outcome prediction for various diseases. With the increasing number of applications of DNNs in modern healthcare, their trustworthiness and reliability are becoming increasingly important. An essential aspect of trustworthiness is detecting the performance degradation and failure of deployed DNNs in medical settings. The softmax output values produced by DNNs are not a calibrated measure of model confidence. Softmax probability numbers are generally higher than the actual model confidence. The model confidence-accuracy gap further increases for wrong predictions and noisy inputs. We employ recently proposed Bayesian deep neural networks (BDNNs) to learn uncertainty in the model parameters. These models simultaneously output the predictions and a measure of confidence in the predictions. By testing these models under various noisy conditions, we show that the (learned) predictive confidence is well calibrated. We use these reliable confidence values for monitoring performance degradation and failure detection in DNNs. We propose two different failure detection methods. In the first method, we define a fixed threshold value based on the behavior of the predictive confidence with changing signal-to-noise ratio (SNR) of the test dataset. The second method learns the threshold value with a neural network. The proposed failure detection mechanisms seamlessly abstain from making decisions when the confidence of the BDNN is below the defined threshold and hold the decision for manual review. Resultantly, the accuracy of the models improves on the unseen test samples. We tested our proposed approach on three medical imaging datasets: PathMNIST, DermaMNIST, and OrganAMNIST, under different levels and types of noise. An increase in the noise of the test images increases the number of abstained samples. BDNNs are inherently robust and show more than 10% accuracy improvement with the proposed failure detection methods. The increased number of abstained samples or an abrupt increase in the predictive variance indicates model performance degradation or possible failure. Our work has the potential to improve the trustworthiness of DNNs and enhance user confidence in the model predictions. 
    more » « less