skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ‘The Cloud is Not Not IT’: Ecological Change in Research Computing in the Cloud
Along with a number of other computing technologies, cloud computing services are increasingly being promoted as a way of enabling openness, reproducibility, and the acceleration of scientific work. While there have been a variety of studies of the cloud in terms of computing performance, there has been little empirical attention to the changes going on around cloud computing at the level of work and practice. Through a qualitative, ethnographic study, we follow a cosmology research group’s transition from a shared high performance computing cluster to a cloud computing service, and examine the cloud service as a coordinative artifact being integrated into a larger ecology of existing practices and artifacts. We find that the transition involves both change and continuity in the group’s coordinative work and maintenance work, and point out some of the effects this adoption has on the group’s larger set of practices. Finally, we discuss practical implications this has for the broader adoption of cloud computing in university-based scientific work.  more » « less
Award ID(s):
1954620
PAR ID:
10515370
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Link
Date Published:
Journal Name:
Computer Supported Cooperative Work (CSCW)
ISSN:
0925-9724
Subject(s) / Keyword(s):
cloud computing, infrastructure, ethnography, CSCW, articulation work
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ever since the commercial offerings of the Cloud started appearing in 2006, the landscape of cloud computing has been undergoing remarkable changes with the emergence of many different types of service offerings, developer productivity enhancement tools, and new application classes as well as the manifestation of cloud functionality closer to the user at the edge. The notion of utility computing, however, has remained constant throughout its evolution, which means that cloud users always seek to save costs of leasing cloud resources while maximizing their use. On the other hand, cloud providers try to maximize their profits while assuring service-level objectives of the cloud-hosted applications and keeping operational costs low. All these outcomes require systematic and sound cloud engineering principles. The aim of this paper is to highlight the importance of cloud engineering, survey the landscape of best practices in cloud engineering and its evolution, discuss many of the existing cloud engineering advances, and identify both the inherent technical challenges and research opportunities for the future of cloud computing in general and cloud engineering in particular. 
    more » « less
  2. The low cost and rapid provisioning capabilities have made the cloud a desirable platform to launch complex scientific applications. However, resource utilization optimization is a significant challenge for cloud service providers, since the earlier focus is provided on optimizing resources for the applications that run on the cloud, with a low emphasis being provided on optimizing resource utilization of the cloud computing internal processes. Code refactoring has been associated with improving the maintenance and understanding of software code. However, analyzing the impact of the refactoring source code of the cloud and studying its impact on cloud resource usage require further analysis. In this paper, we propose a framework called Unified Regression Modeling (URegM) which predicts the impact of code smell refactor- ing on cloud resource usage. We test our experiments in a real-life cloud environment using a complex scientific application as a workload. Results show that URegM is capable of accurately predicting resource consumption due to code smell refactoring. This will permit cloud service providers with advanced knowledge about the impact of refactoring code smells on resource consumption, thus allowing them to plan their resource provisioning and code refactoring more effectively. 
    more » « less
  3. Cloud computing is a concept introduced in the information technology era, with the main components being the grid, distributed, and valuable computing. The cloud is being developed continuously and, naturally, comes up with many challenges, one of which is scheduling. A schedule or timeline is a mechanism used to optimize the time for performing a duty or set of duties. A scheduling process is accountable for choosing the best resources for performing a duty. The main goal of a scheduling algorithm is to improve the efficiency and quality of the service while at the same time ensuring the acceptability and effectiveness of the targets. The task scheduling problem is one of the most important NP-hard issues in the cloud domain and, so far, many techniques have been proposed as solutions, including using genetic algorithms (GAs), particle swarm optimization, (PSO), and ant colony optimization (ACO). To address this problem, in this paper one of the collective intelligence algorithms, called the Salp Swarm Algorithm (SSA), has been expanded, improved, and applied. The performance of the proposed algorithm has been compared with that of GAs, PSO, continuous ACO, and the basic SSA. The results show that our algorithm has generally higher performance than the other algorithms. For example, compared to the basic SSA, the proposed method has an average reduction of approximately 21% in makespan. 
    more » « less
  4. The landscape of research in science and engineering is heavily reliant on computation and data processing. There is continued and expanded usage by disciplines that have historically used advanced computing resources, new usage by disciplines that have not traditionally used HPC, and new modalities of the usage in Data Science, Machine Learning, and other areas of AI. Along with these new patterns have come new advanced computing resource methods and approaches, including the availability of commercial cloud resources. The Coalition for Academic Scientific Computation (CASC) has long been an advocate representing the needs of academic researchers using computational resources, sharing best practices and offering advice to create a national cyberinfrastructure to meet US science, engineering, and other academic computing needs. CASC has completed the first of what we intend to be an annual survey of academic cloud and data center usage and practices in analyzing return on investment in cyberinfrastructure. Critically important findings from this first survey include the following: many of the respondents are engaged in some form of analysis of return in research computing investments, but only a minority currently report the results of such analyses to their upper-level administration. Most respondents are experimenting with use of commercial cloud resources but no respondent indicated that they have found use of commercial cloud services to create financial benefits compared to their current methods. There is clear correlation between levels of investment in research cyberinfrastructure and the scale of both cpu core-hours delivered and the financial level of supported research grants. Also interesting is that almost every respondent indicated that they participate in some sort of national cooperative or nationally provided research computing infrastructure project and most were involved in academic computing-related organizations, indicating a high degree of engagement by institutions of higher education in building and maintaining national research computing ecosystems. Institutions continue to evaluate cloud-based HPC service models, despite having generally concluded that so far cloud HPC is too expensive to use compared to their current methods. 
    more » « less
  5. Due to mainstream adoption of cloud computing and its rapidly increasing usage of energy, the efficient management of cloud computing resources has become an important issue. A key challenge in managing the resources lies in the volatility of their demand. While there have been a wide variety of online algorithms (e.g. Receding Horizon Control, Online Balanced Descent) designed, it is hard for cloud operators to pick the right algorithm. In particular, these algorithms vary greatly on their usage of predictions and performance guarantees. This paper aims at studying an automatic algorithm selection scheme in real time. To do this, we empirically study the prediction errors from real-world cloud computing traces. Results show that prediction errors are distinct from different prediction algorithms, across virtual machines, and over the time horizon. Based on these observations, we propose a simple prediction error model and prove upper bounds on the dynamic regret of several online algorithms. We then apply the empirical and theoretical results to create a simple online meta-algorithm that chooses the best algorithm on the fly. Numerical simulations demonstrate that the performance of the designed policy is close to that of the best algorithm in hindsight. 
    more » « less