skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GHz repetition rate mid-infrared frequency comb spectroscopy of fast chemical reactions
Molecular diagnostics are a primary tool of modern chemistry, enabling researchers to map chemical reaction pathways and rates to better design and control chemical systems. Many chemical reactions are complex, involving multiple species and reaction pathways occurring on µs or shorter timescales. Existing diagnostic approaches provide a subset of chemical and thermodynamic information. Here we optimize across many diagnostic objectives by introducing a high-speed and broadband, mid-infrared dual-frequency-comb absorption spectrometer. The optical bandwidth of >1000cm−1covers absorption fingerprints of many species with spectral resolution <0.03cm−1to accurately discern their absolute quantities. Key to this advance are 1 GHz pulse repetition rate mode-locked frequency combs covering the 3–5 µm region that enable a spectral acquisition rate of 290cm−1per 17.5 µs per detector forin situtracking of fast chemical process dynamics. We demonstrate this system to quantify the abundances and temperatures of each species in the complete reactants-to-products breakdown of 1,3,5-trioxane, which exhibits a formaldehyde decomposition pathway that is critical to modern low-temperature combustion systems. By maximizing the number of observed species and improving the accuracy of temperature and concentration measurements, this spectrometer provides a pathway for modern chemistry approaches such as combining chemical models with machine learning to constrain or predict complex reaction mechanisms and rates.  more » « less
Award ID(s):
2019195 2016244
PAR ID:
10515382
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
11
Issue:
6
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 876
Size(s):
Article No. 876
Sponsoring Org:
National Science Foundation
More Like this
  1. This New Views article will highlight some recent advances in high sensitivity gas detection using direct infrared absorption frequency comb laser spectroscopy, with a focus on frequency comb use in chemical reaction kinetics and our own contribution to this field. Our recently implemented detection technique uses a combination of a 12.9 GHz free spectral range virtually imaged phased array and diffraction grating to spatially disperse the mid-infrared frequency comb onto a camera. Individual frequencies or ‘comb teeth’ of a 250 MHz repetition-rate frequency comb are able to be resolved. High molecular sensitivity is achieved by increasing the interaction path length using a Herriott multipass cell. High spectral resolution, broadband spectral coverage, and high molecular sensitivity are all achieved on an adjustable 1–50 µs timescale, making this frequency comb apparatus ideal for measuring chemical reaction kinetics where multiple absorbing species can be monitored simultaneously. This New Views article will also discuss some of the challenges and decisions that chemists might face in implementing this advanced physics technology in their own laboratory. Spatially dispersed 250 MHz mid-infrared frequency comb laser, with absorption of some frequencies by a dilute sample of methane. KEYWORDS: Frequency combs, chemical kinetics, trace gas detection 
    more » « less
  2. Abstract Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 µm. This frequency comb is based on a commercially available 1.56 µm mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses inχ(2)nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with μs time resolution, 1 GHz (0.03 cm−1) spectral point spacing and a full bandwidth of >5 THz (>166 cm−1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources. 
    more » « less
  3. Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage. Here, we introduce the first broadband MIR frequency comb laser platform at 1 GHz repetition rate that achieves spectral coverage from 3 to 13 {\mu}m. This frequency comb is based on a commercially available 1.56 {\mu}m mode-locked laser, robust all-fiber Er amplifiers and intra-pulse difference frequency generation (IP-DFG) of few-cycle pulses in \c{hi}(2) nonlinear crystals. When used in a dual comb spectroscopy (DCS) configuration, this source will simultaneously enable measurements with {\mu}s time resolution, 1 GHz (0.03 cm-1) spectral point spacing and a full bandwidth of >5 THz (>166 cm-1) anywhere within the MIR atmospheric windows. This represents a unique spectroscopic resource for characterizing fast and non-repetitive events that are currently inaccessible with other sources. 
    more » « less
  4. This manuscript describes the first application of ultrafast-laser-absorption spectroscopy (ULAS) to characterizing high-pressure (up to 40 bar), multi-phase combustion gases. Single-shot measurements of temperature and CO were acquired at 5 kHz in AP-HTPB propellant flames with and without aluminum. An ultrafast light source was used to produce broadband pulses of light near 4.96 𝜇m at a repetition rate of 5 kHz and a high-speed mid-infrared imaging spectrometer was used to image the pulses across an 86 nm bandwidth with a spectral resolution of 0.7 nm. Measurements of temperature and CO concentration were obtained by least-squares fitting simulated absorbance spectra of CO to measured spectra. A system of corrective optics was used to diminish the e˙ect of beam steering during high-pressure experiments, greatly increasing the pressure capabilities of the diagnostic. The diagnostic was used to characterize AP-HTPB propellant flames in an argon bath gas at pressures of 1, 10, 20, and 40 bar. An aluminized AP-HTPB propellant was also characterized at 10 and 20 bar to demonstrate that ULAS can provide high-fidelity measurements in particulate-laden flames. The results demonstrate that ULAS is capable of providing single-shot temperature and species measurements at high pressures with 1-𝜎 precisions less than 1.1% and 3% for temperature and species respectively, despite non-absorbing transmission losses in excess of 90%. 
    more » « less
  5. Mechano- or tribochemical processes are often induced by the large pressures, of the order of 1 GPa, exerted at contacting asperities at the solid–solid interface. These tribochemical process are not very well understood because of the difficulties of probing surface-chemical reaction pathways occurring at buried interfaces. Here, strategies for following surface reaction pathways in detail are illustrated for the tribochemical decomposition of 7-octenoic and octanoic acid adsorbed on copper. The chemistry was measured in ultrahigh vacuum by sliding either a tungsten carbide ball or a silicon atomic force microscope (AFM) tip over the surface to test a previous proposal that the nature of the terminal group in the carboxylic acid, vinyl versus alkyl, could influence its binding to the counterface, and therefore the reaction rate. The carboxylic acids bind strongly to the copper substrate as carboxylates to expose the hydrocarbon terminus. The tribochemical reaction rate was found to be independent of the nature of the hydrocarbon terminus, although the pull-off and friction forces measured by the AFM were different. The tribochemical reaction is initiated in the same way as the thermal reaction, by the carboxylate group tilting to eliminate carbon dioxide and deposit alkyl species onto the surface. This reaction occurs thermally at ∼640 K, but tribochemically at room temperature, producing significant differences in the rates and selectivities of the subsequent decomposition pathways of the adsorbed products. 
    more » « less