skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symmetric Toda, gradient flows, and tridiagonalization
The Toda lattice (1967) is a Hamiltonian system given by n points on a line governed by an exponential potential. Flaschka (1974) showed that the Toda lattice is integrable by interpreting it as a flow on the space of symmetric tridiagonal n × n matrices, while Moser (1975) showed that it is a gradient flow on a projective space. The symmetric Toda flow of Deift, Li, Nanda, and Tomei (1986) generalizes the Toda lattice flow from tridiagonal to all symmetric matrices. They showed the flow is integrable, in the classical sense of having d integrals in involution on its 2d-dimensional phase space. The system may be viewed as integrable in other ways as well. Firstly, Symes (1980, 1982) solved it explicitly via QR-factorization and conjugation. Secondly, Deift, Li, Nanda, and Tomei (1986) ‘tridiagonalized’ the system into a family of tridiagonal Toda lattices which are solvable and integrable. In this paper we derive their tridiagonalization procedure in a natural way using the fact that the symmetric Toda flow is diffeomorphic to a twisted gradient flow on a flag variety, which may then be decomposed into flows on a product of Grassmannians. These flows may in turn be embedded into projective spaces via Plücker embeddings, and mapped back to tridiagonal Toda lattice flows using Moser’s construction. In addition, we study the tridiagonalized flows projected onto a product of permutohedra, using the twisted moment map of Bloch, Flaschka, and Ratiu (1990). These ideas are facilitated in a natural way by the theory of total positivity, building on our previous work (2023).  more » « less
Award ID(s):
2103026
PAR ID:
10515504
Author(s) / Creator(s):
;
Publisher / Repository:
ElsevierToda flows Integrability Gradient flows
Date Published:
Journal Name:
Physcia D
Volume:
450
ISSN:
1550-2368
Page Range / eLocation ID:
133766
Subject(s) / Keyword(s):
Toda flows Integrability Gradient flows
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A fractional extension of the integrable Toda lattice with decaying data on the line is obtained. Completeness of squared eigenfunctions of a linear discrete real tridiagonal eigenvalue problem is derived. This completeness relation allows nonlinear evolution equations expressed in terms of operators to be written in terms of underlying squared eigenfunctions and is related to a discretization of the continuous Schrödinger equation. The methods are discrete counterparts of continuous ones recently used to find fractional integrable extensions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations. Inverse scattering transform (IST) methods are used to linearize and find explicit soliton solutions to the integrable fractional Toda (fToda) lattice equation. The methodology can also be used to find and solve fractional extensions of a Toda lattice hierarchy. 
    more » « less
  2. One can view a partial flag variety in ℂ𝑛 as an adjoint orbit 𝜆 inside the Lie algebra of 𝑛×𝑛 skew-Hermitian matrices. We use the orbit context to study the totally nonnegative part of a partial flag variety from an algebraic, geometric, and dynamical perspective. The paper has three main parts: (1) We introduce the totally nonnegative part of 𝜆 , and describe it explicitly in several cases. We define a twist map on it, which generalizes (in type A) a map of Bloch, Flaschka, and Ratiu (Duke Math. J. 61(1): 41–65, 1990) on an isospectral manifold of Jacobi matrices. (2) We study gradient flows on 𝜆 which preserve positivity, working in three natural Riemannian metrics. In the Kähler metric, positivity is preserved in many cases of interest, extending results of Galashin, Karp, and Lam (Adv. Math. 397: Paper No. 108123, 1–23, 2022; Adv. Math. 351: 614–620, 2019). In the normal metric, positivity is essentially never preserved on a generic orbit. In the induced metric, whether positivity is preserved appears to depends on the spacing of the eigenvalues defining the orbit. (3) We present two applications. First, we discuss the topology of totally nonnegative flag varieties and amplituhedra. Galashin, Karp, and Lam (2022, 2019) showed that the former are homeomorphic to closed balls, and we interpret their argument in the orbit framework. We also show that a new family of amplituhedra, which we call twisted Vandermonde amplituhedra, are homeomorphic to closed balls. Second, we discuss the symmetric Toda flow on 𝜆 . We show that it preserves positivity, and that on the totally nonnegative part, it is a gradient flow in the Kähler metric up to applying the twist map. This extends a result of Bloch, Flaschka, and Ratiu (1990). 
    more » « less
  3. It is shown that the polynuclear growth model is a completely integrable Markov process in the sense that its transition probabilities are given by Fredholm determinants of kernels produced by a scattering transform based on the invariant measures modulo the absolute height, continuous time simple random walks. From the linear evolution of the kernels, it is shown that then-point distributions are determinants ofn\times nmatrices evolving according to thetwo-dimensional non-Abelian Toda lattice. 
    more » « less
  4. We analyze lattice Hamiltonian systems whose global symmetries have ’t Hooft anomalies. As is common in the study of anomalies, they are probed by coupling the system to classical background gauge fields. For flat fields (vanishing field strength), the nonzero spatial components of the gauge fields can be thought of as twisted boundary conditions, or equivalently, as topological defects. The symmetries of the twisted Hilbert space and their representations capture the anomalies. We demonstrate this approach with a number of examples. In some of them, the anomalous symmetries are internal symmetries of the lattice system, but they do not act on-site. (We clarify the notion of “on-site action.”) In other cases, the anomalous symmetries involve lattice translations. Using this approach we frame many known and new results in a unified fashion. In this work, we limit ourselves to 1+1d systems with a spatial lattice. In particular, we present a lattice system that flows to the c=1 compact boson system with any radius (no BKT transition) with the full internal symmetry of the continuum theory, with its anomalies and its T-duality. As another application, we analyze various spin chain models and phrase their Lieb-Shultz-Mattis theorem as an ’t Hooft anomaly matching condition. We also show in what sense filling constraints like Luttinger theorem can and cannot be viewed as reflecting an anomaly. As a by-product, our understanding allows us to use information from the continuum theory to derive some exact results in lattice model of interest, such as the lattice momenta of the low-energy states. 
    more » « less
  5. Abstract This paper is the first in a forthcoming series of works where the authors study the global asymptotic behavior of the radial solutions of the 2D periodic Toda equation of typeAn. The principal issue is the connection formulae between the asymptotic parameters describing the behavior of the general solution at zero and infinity. To reach this goal we are using a fusion of the Iwasawa factorization in the loop group theory and the Riemann-Hilbert nonlinear steepest descent method of Deift and Zhou which is applicable to 2D Toda in view of its Lax integrability. A principal technical challenge is the extension of the nonlinear steepest descent analysis to Riemann-Hilbert problems of matrix rank greater than 2. In this paper, we meet this challenge for the casen = 2 (the rank 3 case) and it already captures the principal features of the generalncase. 
    more » « less