skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Fractional integrable Toda lattice and hierarchy
A fractional extension of the integrable Toda lattice with decaying data on the line is obtained. Completeness of squared eigenfunctions of a linear discrete real tridiagonal eigenvalue problem is derived. This completeness relation allows nonlinear evolution equations expressed in terms of operators to be written in terms of underlying squared eigenfunctions and is related to a discretization of the continuous Schrödinger equation. The methods are discrete counterparts of continuous ones recently used to find fractional integrable extensions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations. Inverse scattering transform (IST) methods are used to linearize and find explicit soliton solutions to the integrable fractional Toda (fToda) lattice equation. The methodology can also be used to find and solve fractional extensions of a Toda lattice hierarchy.  more » « less
Award ID(s):
2306290
PAR ID:
10599418
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
481
Issue:
2313
ISSN:
1364-5021
Subject(s) / Keyword(s):
inverse scattering transform, orthogonality, Toda lattice, fractional integrability, fractional calculus
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  2. Abstract We prove existence, uniqueness and non-negativity of solutions of certain integral equations describing the density of states u ( z ) in the spectral theory of soliton gases for the one dimensional integrable focusing nonlinear Schrödinger equation (fNLS) and for the Korteweg–de Vries (KdV) equation. Our proofs are based on ideas and methods of potential theory. In particular, we show that the minimising (positive) measure for a certain energy functional is absolutely continuous and its density u ( z ) ⩾ 0 solves the required integral equation. In a similar fashion we show that v ( z ), the temporal analog of u ( z ), is the difference of densities of two absolutely continuous measures. Together, the integral equations for u , v represent nonlinear dispersion relation for the fNLS soliton gas. We also discuss smoothness and other properties of the obtained solutions. Finally, we obtain exact solutions of the above integral equations in the case of a KdV condensate and a bound state fNLS condensate. Our results is a step towards a mathematical foundation for the spectral theory of soliton and breather gases, which appeared in work of El and Tovbis (2020 Phys. Rev. E 101 052207). It is expected that the presented ideas and methods will be useful for studying similar classes of integral equation describing, for example, breather gases for the fNLS, as well as soliton gases of various integrable systems. 
    more » « less
  3. Abstract We show that solutions to the Ablowitz–Ladik system converge to solutions of the cubic nonlinear Schrödinger equation for merely L 2 initial data. Furthermore, we consider initial data for this lattice model that excites Fourier modes near both critical points of the discrete dispersion relation and demonstrate convergence to a decoupled system of nonlinear Schrödinger equations. 
    more » « less
  4. Abstract Dispersive shock waves (DSWs) of the defocusing radial nonlinear Schrödinger (rNLS) equation in two spatial dimensions are studied. This equation arises naturally in Bose‐Einstein condensates, water waves, and nonlinear optics. A unified nonlinear WKB approach, equally applicable to integrable or nonintegrable partial differential equations, is used to find the rNLS Whitham modulation equation system in both physical and hydrodynamic type variables. The description of DSWs obtained via Whitham theory is compared with direct rNLS numerics; the results demonstrate very good quantitative agreement. On the other hand, as expected, comparison with the corresponding DSW solutions of the one‐dimensional NLS equation exhibits significant qualitative and quantitative differences. 
    more » « less
  5. Abstract Integrable standard and nonlocal derivative nonlinear Schrödinger equations are investigated. The direct and inverse scattering are constructed for these equations; included are both the Riemann–Hilbert and Gel’fand–Levitan–Marchenko approaches and soliton solutions. As a typical application, it is shown how these derivative NLS equations can be obtained as asymptotic limits from a nonlinear Klein–Gordon equation. 
    more » « less