skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regularized factorization method for a perturbed positive compact operator applied to inverse scattering
Abstract In this paper, we consider a regularization strategy for the factorization method when there is noise added to the data operator. The factorization method is aqualitativemethod used in shape reconstruction problems. These methods are advantageous to use due to the fact that they are computationally simple and require littlea prioriknowledge of the object one wishes to reconstruct. The main focus of this paper is to prove that the regularization strategy presented here produces stable reconstructions. We will show this is the case analytically and numerically for the inverse shape problem of recovering an isotropic scatterer with a conductive boundary condition. We also provide a strategy for picking the regularization parameter with respect to the noise level. Numerical examples are given for a scatterer in two dimensions.  more » « less
Award ID(s):
2107891
PAR ID:
10515556
Author(s) / Creator(s):
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
11
ISSN:
0266-5611
Page Range / eLocation ID:
115007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball. 
    more » « less
  2. ABSTRACT Non‐negative Matrix Factorization (NMF) is an effective algorithm for multivariate data analysis, including applications to feature selection, pattern recognition, and computer vision. Its variant, Semi‐Nonnegative Matrix Factorization (SNF), extends the ability of NMF to render parts‐based data representations to include mixed‐sign data. Graph Regularized SNF builds upon this paradigm by adding a graph regularization term to preserve the local geometrical structure of the data space. Despite their successes, SNF‐related algorithms to date still suffer from instability caused by the Frobenius norm due to the effects of outliers and noise. In this paper, we present a new SNF algorithm that utilizes the noise‐insensitive norm. We provide monotonic convergence analysis of the SNF algorithm. In addition, we conduct numerical experiments on three benchmark mixed‐sign datasets as well as several randomized mixed‐sign matrices to demonstrate the performance superiority of SNF over conventional SNF algorithms under the influence of Gaussian noise at different levels. 
    more » « less
  3. null (Ed.)
    Abstract Discrete ill-posed inverse problems arise in various areas of science and engineering. The presence of noise in the data often makes it difficult to compute an accurate approximate solution. To reduce the sensitivity of the computed solution to the noise, one replaces the original problem by a nearby well-posed minimization problem, whose solution is less sensitive to the noise in the data than the solution of the original problem. This replacement is known as regularization. We consider the situation when the minimization problem consists of a fidelity term, that is defined in terms of a p -norm, and a regularization term, that is defined in terms of a q -norm. We allow 0 < p , q ≤ 2. The relative importance of the fidelity and regularization terms is determined by a regularization parameter. This paper develops an automatic strategy for determining the regularization parameter for these minimization problems. The proposed approach is based on a new application of generalized cross validation. Computed examples illustrate the performance of the method proposed. 
    more » « less
  4. Abstract This paper is concerned with the inverse problem of determining the shape of penetrable periodic scatterers from scattered field data. We propose a sampling method with a novel indicator function for solving this inverse problem. This indicator function is very simple to implement and robust against noise in the data. The resolution and stability analysis of the indicator function is analyzed. Our numerical study shows that the proposed sampling method is more stable than the factorization method and more efficient than the direct or orthogonality sampling method in reconstructing periodic scatterers. 
    more » « less
  5. Abstract We present a wave‐optics‐based BSDF for simulating the corona effect observed when viewing strong light sources through materials such as certain fabrics or glass surfaces with condensation. These visual phenomena arise from the interference of diffraction patterns caused by correlated, disordered arrangements of droplets or pores. Our method leverages the pair correlation function (PCF) to decouple the spatial relationships between scatterers from the diffraction behavior of individual scatterers. This two‐level decomposition allows us to derive a physically based BSDF that provides explicit control over both scatterer shape and spatial correlation. We also introduce a practical importance sampling strategy for integrating our BSDF within a Monte Carlo renderer. Our simulation results and real‐world comparisons demonstrate that the method can reliably reproduce the characteristics of the corona effects in various real‐world diffractive materials. 
    more » « less