skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Engineering Perspectives for Supporting Educational Systems
This panel will focus on the emerging area of Learning Engineering. Learning Engineering is a transdisciplinary area focusing on the systematic application of evidence-based principles from science of learning disciplines to create effective learning experiences, addressing the challenges of learners. During the panel, examples of Learning Engineering will be presented of interest to anyone within human factors and ergonomics with interest in education, training, or usability/design science. The panel will represent experience from both academia and industry. The goal of this panel is to foster dialog between the IEEE Industry Connections Industry Consortium on Learning Engineering (ICICLE) and HFES members in the hope of increasing knowledge of Learning Engineering and creating ties between the two organizations.  more » « less
Award ID(s):
1828010
PAR ID:
10515566
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
67
Issue:
1
ISSN:
1071-1813
Page Range / eLocation ID:
304 to 309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Not AvailableWith a high demand to fill jobs in the semiconductor manufacturing due to the Chips Act there is a need to increase job readiness in graduate education, as industry members think current graduate students are not well prepared to transition from academia to industry. Current graduate academic education pedagogy does an excellent job of providing students with knowledge and scientific skills, such as technical writing and communication. However, current graduate education often does not fully prepare students for industry. Students can get the necessary experience through an internship, but this is not always possible due to location, research time constraints, citizenship, and academic time commitments. Students often struggle with transitioning from an academic setting to industry, because they have only ever experienced academia, and most faculty teaching students have little or not experience working in industry. To overcome this challenge, we developed a novel two course curriculum that aims to mimic a semiconductor industry internship. This is accomplished through “role-playing” courses where students act as internships in the 1st semester (onboarding) and then they transition to employees in the second semester, where they will work with other “students/employees” on creating a “startup” microsystem company. The instructors act as Program Managers/ boses. The courses use problem-based learning (PBL) in a nanofabrication cleanroom. The courses are designed to give students hands-on experience to provide them with the knowledge, skills, and abilities (KSA) that are needed in industry. The key KSA’s were determined by an industrial panel of process engineers via a survey which was used to determine which KSA industry (multinational and SME) value the most. The same survey was given to faculty members to compare differences between what faculty and industry value as critical KSA’s needed in the semiconductor industry. To determine where the gaps were between traditional graduate courses and industry a survey listing 48 different KSA’s was provided to both industrial members and engineering faculty. The survey allowed the industry panel to state what KSA’s were important and what KSA’s they thought Universities already do a good job of teaching to graduate students. The initial results showed that the industry panel thought 37.5% of the KSA’s were important and lacking in current graduate education. That means 63.5% of the KSA’s were either not important or that universities already do a good job of teaching those KSA’s. However, engineering faculty said 58.33% of the KSA’s were needed and not currently taught. This shows a strong discrepancy between what Professors think and what industry consider necessary KSA’s. The KSA topics were divided into categories and the ones with the largest discrepancy between faculty and industry were essential skills and statistics. The results of this study will be beneficial to other programs that wish to provide similar experiences for their graduate students. 
    more » « less
  2. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed. 
    more » « less
  3. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed. 
    more » « less
  4. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed. 
    more » « less
  5. Bertley, Frederic; Kemper, Rebecca; Poklar, Abigail; Heimlich, Joe (Ed.)
    Field trips are a part of many students’ school experiences. Field trips are typically viewed as enjoyable because they provide a chance for students to see something new or different and because they provide an opportunity to be outside of the normal school routine. At the Griffin Museum of Science and Industry (Griffin MSI) we offer several fieldtrip options, including the opportunity to participate in a learning lab—a hands-on museum classroom experience focused on a science topic. In the research study discussed here, we share how we plan to explore the specific effects of attending a medical learning lab on students’ science, technology, engineering, and mathematics (STEM) career interests and the insights we gained from reflecting on the baseline data. While we have internal and external evaluation reports of the value of learning labs, we do not yet have strong indicators to show the impact of our programs. Understanding our impact is especially important given that Griffin MSI welcomes over 200,000 students every year and about 25% of the U.S. workforce is engaged in a STEM job (National Center for Science and Engineering Statistics, 2023). As a cultural institution, we have the opportunity to engage students, especially those from racial and ethnic identities underrepresented in the STEM workforce, and foster their early interest in STEM careers. In this article, I will describe learning labs at Griffin MSI, share our research questions, explain the importance of our methodology, and explore what the baseline data tells us about our student participants. 
    more » « less